| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnd32g | Structured version Visualization version Unicode version | ||
| Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| mndcl.b |
|
| mndcl.p |
|
| mnd4g.1 |
|
| mnd4g.2 |
|
| mnd4g.3 |
|
| mnd4g.4 |
|
| mnd32g.5 |
|
| Ref | Expression |
|---|---|
| mnd32g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnd32g.5 |
. . 3
| |
| 2 | 1 | oveq2d 6666 |
. 2
|
| 3 | mnd4g.1 |
. . 3
| |
| 4 | mnd4g.2 |
. . 3
| |
| 5 | mnd4g.3 |
. . 3
| |
| 6 | mnd4g.4 |
. . 3
| |
| 7 | mndcl.b |
. . . 4
| |
| 8 | mndcl.p |
. . . 4
| |
| 9 | 7, 8 | mndass 17302 |
. . 3
|
| 10 | 3, 4, 5, 6, 9 | syl13anc 1328 |
. 2
|
| 11 | 7, 8 | mndass 17302 |
. . 3
|
| 12 | 3, 4, 6, 5, 11 | syl13anc 1328 |
. 2
|
| 13 | 2, 10, 12 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-sgrp 17284 df-mnd 17295 |
| This theorem is referenced by: cmn32 18211 |
| Copyright terms: Public domain | W3C validator |