Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpteq1df Structured version   Visualization version   Unicode version

Theorem mpteq1df 39443
Description: An equality theorem for the maps to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
mpteq1df.1  |-  F/ x ph
mpteq1df.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
mpteq1df  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )

Proof of Theorem mpteq1df
StepHypRef Expression
1 mpteq1df.1 . . 3  |-  F/ x ph
2 mpteq1df.2 . . 3  |-  ( ph  ->  A  =  B )
31, 2alrimi 2082 . 2  |-  ( ph  ->  A. x  A  =  B )
4 eqid 2622 . . . 4  |-  C  =  C
54rgenw 2924 . . 3  |-  A. x  e.  A  C  =  C
65a1i 11 . 2  |-  ( ph  ->  A. x  e.  A  C  =  C )
7 mpteq12f 4731 . 2  |-  ( ( A. x  A  =  B  /\  A. x  e.  A  C  =  C )  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
83, 6, 7syl2anc 693 1  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    = wceq 1483   F/wnf 1708   A.wral 2912    |-> cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-opab 4713  df-mpt 4730
This theorem is referenced by:  smfliminflem  41036
  Copyright terms: Public domain W3C validator