| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpteq1df | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| mpteq1df.1 | ⊢ Ⅎ𝑥𝜑 |
| mpteq1df.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| mpteq1df | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1df.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mpteq1df.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | alrimi 2082 | . 2 ⊢ (𝜑 → ∀𝑥 𝐴 = 𝐵) |
| 4 | eqid 2622 | . . . 4 ⊢ 𝐶 = 𝐶 | |
| 5 | 4 | rgenw 2924 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶 |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 = 𝐶) |
| 7 | mpteq12f 4731 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 8 | 3, 6, 7 | syl2anc 693 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 Ⅎwnf 1708 ∀wral 2912 ↦ cmpt 4729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-opab 4713 df-mpt 4730 |
| This theorem is referenced by: smfliminflem 41036 |
| Copyright terms: Public domain | W3C validator |