Proof of Theorem smfliminflem
Step | Hyp | Ref
| Expression |
1 | | smfliminflem.g |
. . . 4
 liminf 
            |
2 | 1 | a1i 11 |
. . 3
  liminf 
             |
3 | | smfliminflem.d |
. . . . . . . . . 10
 
          liminf 
            |
4 | | ssrab2 3687 |
. . . . . . . . . 10
            liminf 
                       |
5 | 3, 4 | eqsstri 3635 |
. . . . . . . . 9
      
     |
6 | | id 22 |
. . . . . . . . 9
   |
7 | 5, 6 | sseldi 3601 |
. . . . . . . 8
              |
8 | | smfliminflem.z |
. . . . . . . . 9
     |
9 | | eqid 2622 |
. . . . . . . . 9

          
           |
10 | 8, 9 | allbutfi 39616 |
. . . . . . . 8
             
           |
11 | 7, 10 | sylib 208 |
. . . . . . 7
 
            |
12 | 11 | adantl 482 |
. . . . . 6
 
 
            |
13 | | nfv 1843 |
. . . . . . . . . 10
  
  |
14 | | nfra1 2941 |
. . . . . . . . . 10
  
          |
15 | 13, 14 | nfan 1828 |
. . . . . . . . 9
   
             |
16 | 8 | fvexi 6202 |
. . . . . . . . . 10
 |
17 | 16 | a1i 11 |
. . . . . . . . 9
    
         
  |
18 | 8 | eluzelz2 39627 |
. . . . . . . . . . 11
   |
19 | 18 | zred 11482 |
. . . . . . . . . 10
   |
20 | 19 | ad2antlr 763 |
. . . . . . . . 9
    
         
  |
21 | | simpll 790 |
. . . . . . . . . . 11
    
            |
22 | | elinel1 3799 |
. . . . . . . . . . 11
        |
23 | | smfliminflem.s |
. . . . . . . . . . . . 13
 SAlg |
24 | 23 | adantr 481 |
. . . . . . . . . . . 12
 
 SAlg |
25 | | smfliminflem.f |
. . . . . . . . . . . . 13
     SMblFn    |
26 | 25 | ffvelrnda 6359 |
. . . . . . . . . . . 12
 
     SMblFn    |
27 | | eqid 2622 |
. . . . . . . . . . . 12
         |
28 | 24, 26, 27 | smff 40941 |
. . . . . . . . . . 11
 
               |
29 | 21, 22, 28 | syl2an 494 |
. . . . . . . . . 10
   
                 
              |
30 | | simplr 792 |
. . . . . . . . . . . 12
                   
            |
31 | | eqid 2622 |
. . . . . . . . . . . . . 14
         |
32 | 18 | adantr 481 |
. . . . . . . . . . . . . 14
 
     
  |
33 | 8, 22 | eluzelz2d 39640 |
. . . . . . . . . . . . . . 15
        |
34 | 33 | adantl 482 |
. . . . . . . . . . . . . 14
 
     
  |
35 | 19 | rexrd 10089 |
. . . . . . . . . . . . . . . 16
   |
36 | 35 | adantr 481 |
. . . . . . . . . . . . . . 15
 
     
  |
37 | | pnfxr 10092 |
. . . . . . . . . . . . . . . 16
 |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . 15
 
        |
39 | | elinel2 3800 |
. . . . . . . . . . . . . . . 16
           |
40 | 39 | adantl 482 |
. . . . . . . . . . . . . . 15
 
     
     |
41 | 36, 38, 40 | icogelbd 39785 |
. . . . . . . . . . . . . 14
 
        |
42 | 31, 32, 34, 41 | eluzd 39635 |
. . . . . . . . . . . . 13
 
     
      |
43 | 42 | adantlr 751 |
. . . . . . . . . . . 12
                   
      |
44 | | rspa 2930 |
. . . . . . . . . . . 12
           
    
      |
45 | 30, 43, 44 | syl2anc 693 |
. . . . . . . . . . 11
                   
      |
46 | 45 | adantlll 754 |
. . . . . . . . . 10
   
                 
      |
47 | 29, 46 | ffvelrnd 6360 |
. . . . . . . . 9
   
                 
          |
48 | 15, 17, 20, 47 | liminfval4 40021 |
. . . . . . . 8
    
          liminf 
               
             |
49 | 48 | rexlimdva2 39339 |
. . . . . . 7
             liminf 
               
              |
50 | 49 | adantr 481 |
. . . . . 6
 
  

         liminf 
               
              |
51 | 12, 50 | mpd 15 |
. . . . 5
 
 liminf                               |
52 | 51 | xnegeqd 39664 |
. . . . . . . . 9
 
   liminf 
                              |
53 | 16 | mptex 6486 |
. . . . . . . . . . . 12
            |
54 | 53 | limsupcli 39989 |
. . . . . . . . . . 11
                |
55 | 54 | xnegnegi 39666 |
. . . . . . . . . 10
                     
            |
56 | 55 | a1i 11 |
. . . . . . . . 9
 
                      
             |
57 | 52, 56 | eqtr2d 2657 |
. . . . . . . 8
 
                  liminf              |
58 | 3 | rabeq2i 3197 |
. . . . . . . . . . 11

            liminf 
             |
59 | 58 | simprbi 480 |
. . . . . . . . . 10
 liminf              |
60 | 59 | adantl 482 |
. . . . . . . . 9
 
 liminf              |
61 | 60 | rexnegd 39334 |
. . . . . . . 8
 
   liminf 
           liminf              |
62 | 57, 61 | eqtr2d 2657 |
. . . . . . 7
 
  liminf               
             |
63 | 60 | renegcld 10457 |
. . . . . . 7
 
  liminf              |
64 | 62, 63 | eqeltrrd 2702 |
. . . . . 6
 
                  |
65 | 64 | rexnegd 39334 |
. . . . 5
 
      
               
             |
66 | 51, 65 | eqtrd 2656 |
. . . 4
 
 liminf                              |
67 | 66 | mpteq2dva 4744 |
. . 3
  liminf 
                
              |
68 | 2, 67 | eqtrd 2656 |
. 2
                     |
69 | | nfv 1843 |
. . 3
   |
70 | 18, 31 | uzn0d 39652 |
. . . . . . . 8
       |
71 | | fvex 6201 |
. . . . . . . . . . 11
     |
72 | 71 | dmex 7099 |
. . . . . . . . . 10
     |
73 | 72 | rgenw 2924 |
. . . . . . . . 9
           |
74 | 73 | a1i 11 |
. . . . . . . 8
             |
75 | | iinexg 4824 |
. . . . . . . 8
                 
           |
76 | 70, 74, 75 | syl2anc 693 |
. . . . . . 7
             |
77 | 76 | rgen 2922 |
. . . . . 6

           |
78 | | iunexg 7143 |
. . . . . 6
        
                  |
79 | 16, 77, 78 | mp2an 708 |
. . . . 5

           |
80 | 79, 5 | ssexi 4803 |
. . . 4
 |
81 | 80 | a1i 11 |
. . 3
   |
82 | 3 | a1i 11 |
. . . . . 6
             liminf 
             |
83 | 10 | biimpi 206 |
. . . . . . . . 9
           

            |
84 | 49 | imp 445 |
. . . . . . . . 9
 

          
liminf                               |
85 | 83, 84 | sylan2 491 |
. . . . . . . 8
 
      
     liminf 
               
             |
86 | 54 | a1i 11 |
. . . . . . . . . 10
  liminf 
               
           liminf                              |
87 | | simpl 473 |
. . . . . . . . . . 11
  liminf 
               
           liminf             liminf                               |
88 | | simpr 477 |
. . . . . . . . . . 11
  liminf 
               
           liminf             liminf              |
89 | 87, 88 | eqeltrrd 2702 |
. . . . . . . . . 10
  liminf 
               
           liminf                  
             |
90 | | xnegrecl2 39690 |
. . . . . . . . . 10
     
                                
             |
91 | 86, 89, 90 | syl2anc 693 |
. . . . . . . . 9
  liminf 
               
           liminf                              |
92 | | simpl 473 |
. . . . . . . . . 10
  liminf 
               
                           liminf 
               
             |
93 | | xnegrecl 39665 |
. . . . . . . . . . 11
                     
             |
94 | 93 | adantl 482 |
. . . . . . . . . 10
  liminf 
               
                                              |
95 | 92, 94 | eqeltrd 2701 |
. . . . . . . . 9
  liminf 
               
                           liminf 
            |
96 | 91, 95 | impbida 877 |
. . . . . . . 8
 liminf                              liminf 
                            |
97 | 85, 96 | syl 17 |
. . . . . . 7
 
      
      liminf                              |
98 | 97 | rabbidva 3188 |
. . . . . 6
  
          liminf 
            
                            |
99 | 82, 98 | eqtrd 2656 |
. . . . 5
                               |
100 | 69, 99 | mpteq1df 39443 |
. . . 4
     
              
                                            |
101 | | nfv 1843 |
. . . . 5
   |
102 | | nfv 1843 |
. . . . 5
   |
103 | | smfliminflem.m |
. . . . 5
   |
104 | | negex 10279 |
. . . . . 6
          |
105 | 104 | a1i 11 |
. . . . 5
 
    
           |
106 | | nfv 1843 |
. . . . . 6
  
  |
107 | 72 | a1i 11 |
. . . . . 6
 
       |
108 | 28 | ffvelrnda 6359 |
. . . . . 6
                   |
109 | 28 | feqmptd 6249 |
. . . . . . 7
 
                     |
110 | 109, 26 | eqeltrrd 2702 |
. . . . . 6
 
               SMblFn    |
111 | 106, 24, 107, 108, 110 | smfneg 41010 |
. . . . 5
 
                SMblFn    |
112 | | eqid 2622 |
. . . . 5
                             
                           |
113 | | eqid 2622 |
. . . . 5
                                                                                           |
114 | 101, 69, 102, 103, 8, 23, 105, 111, 112, 113 | smflimsupmpt 41035 |
. . . 4
   
                                          SMblFn    |
115 | 100, 114 | eqeltrd 2701 |
. . 3
     
            SMblFn    |
116 | 69, 23, 81, 64, 115 | smfneg 41010 |
. 2
                   SMblFn    |
117 | 68, 116 | eqeltrd 2701 |
1
 SMblFn    |