HomeHome Metamath Proof Explorer
Theorem List (p. 395 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 39401-39500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminmap 39401 Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  Z )   =>    |-  ( ph  ->  ( ( A  ^m  C )  i^i  ( B  ^m  C ) )  =  ( ( A  i^i  B )  ^m  C ) )
 
Theoremfcoss 39402 Composition of two mappings. Similar to fco 6058, but with a weaker condition on the domain of 
F. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  G : D --> C )   =>    |-  ( ph  ->  ( F  o.  G ) : D --> B )
 
Theoremfsneqrn 39403 Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  B  =  { A }   &    |-  ( ph  ->  F  Fn  B )   &    |-  ( ph  ->  G  Fn  B )   =>    |-  ( ph  ->  ( F  =  G  <->  ( F `  A )  e.  ran  G ) )
 
Theoremdifmapsn 39404 Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  Z )   =>    |-  ( ph  ->  ( ( A  ^m  { C } )  \  ( B  ^m  { C }
 ) )  =  ( ( A  \  B )  ^m  { C }
 ) )
 
Theoremmapssbi 39405 Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  Z )   &    |-  ( ph  ->  C  =/=  (/) )   =>    |-  ( ph  ->  ( A  C_  B  <->  ( A  ^m  C )  C_  ( B 
 ^m  C ) ) )
 
Theoremunirnmapsn 39406 Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  C  =  { A }   &    |-  ( ph  ->  X 
 C_  ( B  ^m  C ) )   =>    |-  ( ph  ->  X  =  ( ran  U. X  ^m  C ) )
 
Theoremiunmapss 39407* The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  W )   =>    |-  ( ph  ->  U_ x  e.  A  ( B  ^m  C )  C_  ( U_ x  e.  A  B  ^m  C ) )
 
Theoremssmapsn 39408* A subset  C of a set exponentiation to a singleton, is its projection  D exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  F/_ f D   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C 
 C_  ( B  ^m  { A } ) )   &    |-  D  =  U_ f  e.  C  ran  f   =>    |-  ( ph  ->  C  =  ( D  ^m  { A } ) )
 
Theoremiunmapsn 39409* The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  e.  V )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  Z )   =>    |-  ( ph  ->  U_ x  e.  A  ( B  ^m  { C } )  =  ( U_ x  e.  A  B  ^m  { C }
 ) )
 
Theoremabsfico 39410 Mapping domain and codomain of the absolute value function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  abs : CC --> ( 0 [,) +oo )
 
Theoremicof 39411 The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  [,) : ( RR*  X.  RR* ) --> ~P RR*
 
Theoremrnmpt0 39412* The range of a function in map-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  ( ran  F  =  (/)  <->  A  =  (/) ) )
 
Theoremrnmptn0 39413* The range of a function in map-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   &    |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  ran 
 F  =/=  (/) )
 
Theoremelpmrn 39414 The range of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( F  e.  ( A  ^pm 
 B )  ->  ran  F  C_  A )
 
Theoremimaexi 39415 The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  A  e.  V   =>    |-  ( A " B )  e.  _V
 
Theoremaxccdom 39416* Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  X  ~<_  om )   &    |-  (
 ( ph  /\  z  e.  X )  ->  z  =/= 
 (/) )   =>    |-  ( ph  ->  E. f
 ( f  Fn  X  /\  A. z  e.  X  ( f `  z
 )  e.  z ) )
 
Theoremdmmptdf 39417* The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ x ph   &    |-  A  =  ( x  e.  B  |->  C )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  C  e.  V )   =>    |-  ( ph  ->  dom  A  =  B )
 
Theoremelpmi2 39418 The domain of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( F  e.  ( A  ^pm 
 B )  ->  dom  F  C_  B )
 
Theoremdmrelrnrel 39419* A relation preserving function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( F `  x ) S ( F `  y ) ) )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  ( F `  B ) S ( F `  C ) )
 
Theoremfdmd 39420 The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  dom  F  =  A )
 
Theoremfco3 39421 Functionality of a composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  Fun  G )   =>    |-  ( ph  ->  ( F  o.  G ) : ( `' G " dom  F )
 --> ran  F )
 
Theoremdmexd 39422 The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  dom  A  e.  _V )
 
Theoremfvcod 39423 Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  Fun  G )   &    |-  ( ph  ->  A  e.  dom  G )   &    |-  H  =  ( F  o.  G )   =>    |-  ( ph  ->  ( H `  A )  =  ( F `  ( G `
  A ) ) )
 
Theoremfcod 39424 Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  F : B --> C )   &    |-  ( ph  ->  G : A --> B )   =>    |-  ( ph  ->  ( F  o.  G ) : A --> C )
 
Theoremfreld 39425 A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  Rel  F )
 
Theoremfrnd 39426 The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  ran  F  C_  B )
 
Theoremelrnmpt2id 39427* Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( x  e.  A  /\  y  e.  B  /\  A. x  e.  A  A. y  e.  B  C  e.  V )  ->  ( x F y )  e.  ran  F )
 
Theoremfvmptelrn 39428* A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )   =>    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  C )
 
Theoremaxccd 39429* An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  ~~  om )   &    |-  ( ( ph  /\  x  e.  A )  ->  x  =/= 
 (/) )   =>    |-  ( ph  ->  E. f A. x  e.  A  ( f `  x )  e.  x )
 
Theoremaxccd2 39430* An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  ~<_  om )   &    |-  (
 ( ph  /\  x  e.  A )  ->  x  =/= 
 (/) )   =>    |-  ( ph  ->  E. f A. x  e.  A  ( f `  x )  e.  x )
 
Theoremfunimassd 39431* Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  Fun 
 F )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( F `  x )  e.  B )   =>    |-  ( ph  ->  ( F " A )  C_  B )
 
Theoremfimassd 39432 The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  ( F " X )  C_  B )
 
Theoremfeqresmptf 39433* Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ x F   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  C_  A )   =>    |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
 
Theoremfnmptd 39434* The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  F  Fn  A )
 
Theoremelrnmpt1d 39435 Elementhood in an image set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  x  e.  A )   &    |-  ( ph  ->  B  e.  V )   =>    |-  ( ph  ->  B  e.  ran  F )
 
Theoremdmresss 39436 The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  dom  ( A  |`  B ) 
 C_  dom  A
 
Theoremmptima 39437* Image of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  (
 ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  ( A  i^i  C )  |->  B )
 
Theoremdmmptssf 39438 The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ x A   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  dom 
 F  C_  A
 
Theoremdmmptdf2 39439 The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  F/_ x B   &    |-  A  =  ( x  e.  B  |->  C )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  C  e.  V )   =>    |-  ( ph  ->  dom  A  =  B )
 
Theoremdmuz 39440 Domain of the upper integers function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  dom  ZZ>=  =  ZZ
 
Theoremfndmd 39441 The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  Fn  A )   =>    |-  ( ph  ->  dom  F  =  A )
 
Theoremfmptd2f 39442* Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
 
Theoremmpteq1df 39443 An equality theorem for the maps to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmptexf 39444 If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg 6484. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ x A   &    |-  A  e.  _V   =>    |-  ( x  e.  A  |->  B )  e. 
 _V
 
Theoremfvmptd2 39445* Deduction version of fvmpt 6282. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F  =  ( x  e.  D  |->  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  =  C )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  C )
 
Theoremfvmpt4 39446* Value of a function given by the "maps to" notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  (
 ( x  e.  A  /\  B  e.  C ) 
 ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
 
Theoremfvmptd3 39447* Deduction version of fvmpt 6282. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F  =  ( x  e.  D  |->  B )   &    |-  ( x  =  A  ->  B  =  C )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  C )
 
Theoremfmptf 39448* Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ x B   &    |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
 
Theoremresimass 39449 The image of a restriction is a subset of the original image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  (
 ( A  |`  B )
 " C )  C_  ( A " C )
 
Theoremmptssid 39450 The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ x A   &    |-  C  =  { x  e.  A  |  B  e.  _V
 }   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  B )
 
Theoremmptfnd 39451 The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.)
 |-  F/_ x A   &    |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A )
 
Theoremmpteq12da 39452 An equality inference for the maps to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =  C )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremrnmptlb 39453* Boundness below of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  y 
 <_  B )   =>    |-  ( ph  ->  E. y  e.  RR  A. z  e. 
 ran  ( x  e.  A  |->  B ) y 
 <_  z )
 
Theoremelpreimad 39454 Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  C )   =>    |-  ( ph  ->  B  e.  ( `' F " C ) )
 
Theoremrnmptbddlem 39455* Boundness of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   =>    |-  ( ph  ->  E. y  e.  RR  A. z  e. 
 ran  ( x  e.  A  |->  B ) z 
 <_  y )
 
Theoremrnmptbdd 39456* Boundness of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   =>    |-  ( ph  ->  E. y  e.  RR  A. z  e. 
 ran  ( x  e.  A  |->  B ) z 
 <_  y )
 
Theoremmptima2 39457* Image of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  C  C_  A )   =>    |-  ( ph  ->  (
 ( x  e.  A  |->  B ) " C )  =  ran  ( x  e.  C  |->  B ) )
 
Theoremfvelimad 39458* Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ x F   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  C  e.  ( F " B ) )   =>    |-  ( ph  ->  E. x  e.  ( A  i^i  B ) ( F `  x )  =  C )
 
Theoremfnfvimad 39459 A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  B  e.  C )   =>    |-  ( ph  ->  ( F `  B )  e.  ( F " C ) )
 
Theoremfmptd2 39460* Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
 
Theoremfunimaeq 39461* Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  Fun 
 F )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  A 
 C_  dom  F )   &    |-  ( ph  ->  A  C_  dom  G )   &    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )   =>    |-  ( ph  ->  ( F " A )  =  ( G " A ) )
 
Theoremrnmptssf 39462* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ x C   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  C  ->  ran 
 F  C_  C )
 
Theoremrnmptbd2lem 39463* Boundness below of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   =>    |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  y  <_  B  <->  E. y  e.  RR  A. z  e.  ran  ( x  e.  A  |->  B ) y  <_  z )
 )
 
Theoremrnmptbd2 39464* Boundness below of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   =>    |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  y  <_  B  <->  E. y  e.  RR  A. z  e.  ran  ( x  e.  A  |->  B ) y  <_  z )
 )
 
Theoreminfnsuprnmpt 39465* The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  y 
 <_  B )   =>    |-  ( ph  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  =  -u sup ( ran  ( x  e.  A  |->  -u B ) ,  RR ,  <  ) )
 
Theoremsuprclrnmpt 39466* Closure of the indexed supremum of a nonempty bounded set of reals. Range of a function in map-to notation can be used, to express an indexed supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   =>    |-  ( ph  ->  sup ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  e.  RR )
 
Theoremsuprubrnmpt2 39467* A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( x  =  C  ->  B  =  D )   =>    |-  ( ph  ->  D  <_  sup ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  ) )
 
Theoremsuprubrnmpt 39468* A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   =>    |-  ( ( ph  /\  x  e.  A )  ->  B  <_  sup ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  ) )
 
Theoremrnmptssdf 39469* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  F/_ x C   &    |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  C )   =>    |-  ( ph  ->  ran  F  C_  C )
 
Theoremrnmptbdlem 39470* Boundness above of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  V )   =>    |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  B  <_  y  <->  E. y  e.  RR  A. z  e.  ran  ( x  e.  A  |->  B ) z  <_  y )
 )
 
Theoremrnmptbd 39471* Boundness above of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   =>    |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  B  <_  y  <->  E. y  e.  RR  A. z  e.  ran  ( x  e.  A  |->  B ) z  <_  y )
 )
 
Theoremrnmptss2 39472* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A 
 C_  B )   &    |-  (
 ( ph  /\  x  e.  A )  ->  C  e.  V )   =>    |-  ( ph  ->  ran  ( x  e.  A  |->  C ) 
 C_  ran  ( x  e.  B  |->  C ) )
 
Theoremelmptima 39473* The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( C  e.  V  ->  ( C  e.  ( ( x  e.  A  |->  B ) " D )  <->  E. x  e.  ( A  i^i  D ) C  =  B ) )
 
Theoremralrnmpt3 39474* A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. y  e.  ran  ( x  e.  A  |->  B ) ps  <->  A. x  e.  A  ch ) )
 
Theoremfvelima2 39475* Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  (
 ( F  Fn  A  /\  B  e.  ( F
 " C ) ) 
 ->  E. x  e.  ( A  i^i  C ) ( F `  x )  =  B )
 
Theoremfunresd 39476 A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  Fun  F )   =>    |-  ( ph  ->  Fun  ( F  |`  A ) )
 
Theoremrnmptssbi 39477* The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  V )   =>    |-  ( ph  ->  ( ran  F 
 C_  C  <->  A. x  e.  A  B  e.  C )
 )
 
Theoremfnfvima2 39478 Given an element of the preimage, its function value is in the image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  B  e.  C )   =>    |-  ( ph  ->  ( F `  B )  e.  ( F " C ) )
 
Theoremfnfvelrnd 39479 A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  ( F `  B )  e. 
 ran  F )
 
Theoremimass2d 39480 Subset theorem for image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C " A )  C_  ( C " B ) )
 
Theoremimassmpt 39481* Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ x ph   &    |-  ( ( ph  /\  x  e.  ( A  i^i  C ) ) 
 ->  B  e.  V )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  ( ( F " C )  C_  D  <->  A. x  e.  ( A  i^i  C ) B  e.  D ) )
 
Theoremfnssresd 39482 Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  B  C_  A )   =>    |-  ( ph  ->  ( F  |`  B )  Fn  B )
 
Theoremfpmd 39483 A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  F : C --> B )   =>    |-  ( ph  ->  F  e.  ( B  ^pm  A ) )
 
Theoremfconst7 39484* An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  F/ x ph   &    |-  F/_ x F   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( F `  x )  =  B )   =>    |-  ( ph  ->  F  =  ( A  X.  { B } ) )
 
20.32.3  Ordering on real numbers - Real and complex numbers basic operations
 
Theoremsub2times 39485 Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( A  e.  CC  ->  ( A  -  ( 2  x.  A ) )  =  -u A )
 
Theoremxrltled 39486 'Less than' implies 'less than or equal to', for extended reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  A 
 <_  B )
 
Theoremabssubrp 39487 The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  (
 ( A  e.  CC  /\  B  e.  CC  /\  A  =/=  B )  ->  ( abs `  ( A  -  B ) )  e.  RR+ )
 
Theoremelfzfzo 39488 Relationship between membership in a half open finite set of sequential integers and membership in a finite set of sequential intergers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( A  e.  ( M..^ N )  <->  ( A  e.  ( M ... N ) 
 /\  A  <  N ) )
 
Theoremoddfl 39489 Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  (
 ( K  e.  ZZ  /\  ( K  mod  2
 )  =/=  0 )  ->  K  =  ( ( 2  x.  ( |_ `  ( K  /  2
 ) ) )  +  1 ) )
 
Theoremabscosbd 39490 Bound for the absolute value of the cosine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( A  e.  RR  ->  ( abs `  ( cos `  A ) )  <_ 
 1 )
 
Theoremmul13d 39491 Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( B  x.  C ) )  =  ( C  x.  ( B  x.  A ) ) )
 
Theoremnegpilt0 39492 Negative  pi is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  -u pi  <  0
 
Theoremdstregt0 39493* A complex number  A that is not real, has a distance from the reals that is strictly larger than  0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  ( CC  \  RR ) )   =>    |-  ( ph  ->  E. x  e.  RR+  A. y  e.  RR  x  <  ( abs `  ( A  -  y ) ) )
 
Theoremsubadd4b 39494 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  +  ( C  -  D ) )  =  ( ( A  -  D )  +  ( C  -  B ) ) )
 
Theoremxrlttri5d 39495 Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  -.  B  <  A )   =>    |-  ( ph  ->  A  <  B )
 
Theoremneglt 39496 The negative of a positive number is less than the number itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( A  e.  RR+  ->  -u A  <  A )
 
Theoremzltlesub 39497 If an integer  N is smaller or equal to a real, and we subtract a quantity smaller than  1, then  N is smaller or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  N 
 <_  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  B  <  1
 )   &    |-  ( ph  ->  ( A  -  B )  e. 
 ZZ )   =>    |-  ( ph  ->  N  <_  ( A  -  B ) )
 
Theoremdivlt0gt0d 39498 The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  ( A  /  B )  <  0 )
 
Theoremsubsub23d 39499 Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( ( A  -  B )  =  C  <->  ( A  -  C )  =  B ) )
 
Theorem2timesgt 39500 Double of a positive real is larger than the real itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( A  e.  RR+  ->  A  <  ( 2  x.  A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >