| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan1 | Structured version Visualization version Unicode version | ||
| Description: The induced subgraph |
| Ref | Expression |
|---|---|
| uhgrspan1.v |
|
| uhgrspan1.i |
|
| uhgrspan1.f |
|
| uhgrspan1.s |
|
| Ref | Expression |
|---|---|
| uhgrspan1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difssd 3738 |
. 2
| |
| 2 | uhgrspan1.v |
. . . 4
| |
| 3 | uhgrspan1.i |
. . . 4
| |
| 4 | uhgrspan1.f |
. . . 4
| |
| 5 | uhgrspan1.s |
. . . 4
| |
| 6 | 2, 3, 4, 5 | uhgrspan1lem3 26194 |
. . 3
|
| 7 | resresdm 5626 |
. . 3
| |
| 8 | 6, 7 | mp1i 13 |
. 2
|
| 9 | 3 | uhgrfun 25961 |
. . . . . 6
|
| 10 | fvelima 6248 |
. . . . . . 7
| |
| 11 | 10 | ex 450 |
. . . . . 6
|
| 12 | 9, 11 | syl 17 |
. . . . 5
|
| 13 | 12 | adantr 481 |
. . . 4
|
| 14 | eqidd 2623 |
. . . . . . . 8
| |
| 15 | fveq2 6191 |
. . . . . . . 8
| |
| 16 | 14, 15 | neleq12d 2901 |
. . . . . . 7
|
| 17 | 16, 4 | elrab2 3366 |
. . . . . 6
|
| 18 | fvexd 6203 |
. . . . . . . . 9
| |
| 19 | 2, 3 | uhgrss 25959 |
. . . . . . . . . 10
|
| 20 | 19 | ad2ant2r 783 |
. . . . . . . . 9
|
| 21 | simprr 796 |
. . . . . . . . 9
| |
| 22 | elpwdifsn 4319 |
. . . . . . . . 9
| |
| 23 | 18, 20, 21, 22 | syl3anc 1326 |
. . . . . . . 8
|
| 24 | eleq1 2689 |
. . . . . . . . 9
| |
| 25 | 24 | eqcoms 2630 |
. . . . . . . 8
|
| 26 | 23, 25 | syl5ibrcom 237 |
. . . . . . 7
|
| 27 | 26 | ex 450 |
. . . . . 6
|
| 28 | 17, 27 | syl5bi 232 |
. . . . 5
|
| 29 | 28 | rexlimdv 3030 |
. . . 4
|
| 30 | 13, 29 | syld 47 |
. . 3
|
| 31 | 30 | ssrdv 3609 |
. 2
|
| 32 | opex 4932 |
. . . . 5
| |
| 33 | 5, 32 | eqeltri 2697 |
. . . 4
|
| 34 | 33 | a1i 11 |
. . 3
|
| 35 | 2, 3, 4, 5 | uhgrspan1lem2 26193 |
. . . . 5
|
| 36 | 35 | eqcomi 2631 |
. . . 4
|
| 37 | eqid 2622 |
. . . 4
| |
| 38 | 6 | rneqi 5352 |
. . . . 5
|
| 39 | edgval 25941 |
. . . . 5
| |
| 40 | df-ima 5127 |
. . . . 5
| |
| 41 | 38, 39, 40 | 3eqtr4ri 2655 |
. . . 4
|
| 42 | 36, 2, 37, 3, 41 | issubgr 26163 |
. . 3
|
| 43 | 34, 42 | sylan2 491 |
. 2
|
| 44 | 1, 8, 31, 43 | mpbir3and 1245 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-1st 7168 df-2nd 7169 df-vtx 25876 df-iedg 25877 df-edg 25940 df-uhgr 25953 df-subgr 26160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |