MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1 Structured version   Visualization version   Unicode version

Theorem uhgrspan1 26195
Description: The induced subgraph  S of a hypergraph  G obtained by removing one vertex is actually a subgraph of  G. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v  |-  V  =  (Vtx `  G )
uhgrspan1.i  |-  I  =  (iEdg `  G )
uhgrspan1.f  |-  F  =  { i  e.  dom  I  |  N  e/  ( I `  i
) }
uhgrspan1.s  |-  S  = 
<. ( V  \  { N } ) ,  ( I  |`  F ) >.
Assertion
Ref Expression
uhgrspan1  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  S SubGraph  G )
Distinct variable groups:    i, I    i, N
Allowed substitution hints:    S( i)    F( i)    G( i)    V( i)

Proof of Theorem uhgrspan1
Dummy variables  c 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 3738 . 2  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  ( V  \  { N }
)  C_  V )
2 uhgrspan1.v . . . 4  |-  V  =  (Vtx `  G )
3 uhgrspan1.i . . . 4  |-  I  =  (iEdg `  G )
4 uhgrspan1.f . . . 4  |-  F  =  { i  e.  dom  I  |  N  e/  ( I `  i
) }
5 uhgrspan1.s . . . 4  |-  S  = 
<. ( V  \  { N } ) ,  ( I  |`  F ) >.
62, 3, 4, 5uhgrspan1lem3 26194 . . 3  |-  (iEdg `  S )  =  ( I  |`  F )
7 resresdm 5626 . . 3  |-  ( (iEdg `  S )  =  ( I  |`  F )  ->  (iEdg `  S )  =  ( I  |`  dom  (iEdg `  S )
) )
86, 7mp1i 13 . 2  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  (iEdg `  S )  =  ( I  |`  dom  (iEdg `  S ) ) )
93uhgrfun 25961 . . . . . 6  |-  ( G  e. UHGraph  ->  Fun  I )
10 fvelima 6248 . . . . . . 7  |-  ( ( Fun  I  /\  c  e.  ( I " F
) )  ->  E. j  e.  F  ( I `  j )  =  c )
1110ex 450 . . . . . 6  |-  ( Fun  I  ->  ( c  e.  ( I " F
)  ->  E. j  e.  F  ( I `  j )  =  c ) )
129, 11syl 17 . . . . 5  |-  ( G  e. UHGraph  ->  ( c  e.  ( I " F
)  ->  E. j  e.  F  ( I `  j )  =  c ) )
1312adantr 481 . . . 4  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  (
c  e.  ( I
" F )  ->  E. j  e.  F  ( I `  j
)  =  c ) )
14 eqidd 2623 . . . . . . . 8  |-  ( i  =  j  ->  N  =  N )
15 fveq2 6191 . . . . . . . 8  |-  ( i  =  j  ->  (
I `  i )  =  ( I `  j ) )
1614, 15neleq12d 2901 . . . . . . 7  |-  ( i  =  j  ->  ( N  e/  ( I `  i )  <->  N  e/  ( I `  j
) ) )
1716, 4elrab2 3366 . . . . . 6  |-  ( j  e.  F  <->  ( j  e.  dom  I  /\  N  e/  ( I `  j
) ) )
18 fvexd 6203 . . . . . . . . 9  |-  ( ( ( G  e. UHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  N  e/  (
I `  j )
) )  ->  (
I `  j )  e.  _V )
192, 3uhgrss 25959 . . . . . . . . . 10  |-  ( ( G  e. UHGraph  /\  j  e.  dom  I )  -> 
( I `  j
)  C_  V )
2019ad2ant2r 783 . . . . . . . . 9  |-  ( ( ( G  e. UHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  N  e/  (
I `  j )
) )  ->  (
I `  j )  C_  V )
21 simprr 796 . . . . . . . . 9  |-  ( ( ( G  e. UHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  N  e/  (
I `  j )
) )  ->  N  e/  ( I `  j
) )
22 elpwdifsn 4319 . . . . . . . . 9  |-  ( ( ( I `  j
)  e.  _V  /\  ( I `  j
)  C_  V  /\  N  e/  ( I `  j ) )  -> 
( I `  j
)  e.  ~P ( V  \  { N }
) )
2318, 20, 21, 22syl3anc 1326 . . . . . . . 8  |-  ( ( ( G  e. UHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  N  e/  (
I `  j )
) )  ->  (
I `  j )  e.  ~P ( V  \  { N } ) )
24 eleq1 2689 . . . . . . . . 9  |-  ( c  =  ( I `  j )  ->  (
c  e.  ~P ( V  \  { N }
)  <->  ( I `  j )  e.  ~P ( V  \  { N } ) ) )
2524eqcoms 2630 . . . . . . . 8  |-  ( ( I `  j )  =  c  ->  (
c  e.  ~P ( V  \  { N }
)  <->  ( I `  j )  e.  ~P ( V  \  { N } ) ) )
2623, 25syl5ibrcom 237 . . . . . . 7  |-  ( ( ( G  e. UHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  N  e/  (
I `  j )
) )  ->  (
( I `  j
)  =  c  -> 
c  e.  ~P ( V  \  { N }
) ) )
2726ex 450 . . . . . 6  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  (
( j  e.  dom  I  /\  N  e/  (
I `  j )
)  ->  ( (
I `  j )  =  c  ->  c  e. 
~P ( V  \  { N } ) ) ) )
2817, 27syl5bi 232 . . . . 5  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  (
j  e.  F  -> 
( ( I `  j )  =  c  ->  c  e.  ~P ( V  \  { N } ) ) ) )
2928rexlimdv 3030 . . . 4  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  ( E. j  e.  F  ( I `  j
)  =  c  -> 
c  e.  ~P ( V  \  { N }
) ) )
3013, 29syld 47 . . 3  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  (
c  e.  ( I
" F )  -> 
c  e.  ~P ( V  \  { N }
) ) )
3130ssrdv 3609 . 2  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  (
I " F ) 
C_  ~P ( V  \  { N } ) )
32 opex 4932 . . . . 5  |-  <. ( V  \  { N }
) ,  ( I  |`  F ) >.  e.  _V
335, 32eqeltri 2697 . . . 4  |-  S  e. 
_V
3433a1i 11 . . 3  |-  ( N  e.  V  ->  S  e.  _V )
352, 3, 4, 5uhgrspan1lem2 26193 . . . . 5  |-  (Vtx `  S )  =  ( V  \  { N } )
3635eqcomi 2631 . . . 4  |-  ( V 
\  { N }
)  =  (Vtx `  S )
37 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
386rneqi 5352 . . . . 5  |-  ran  (iEdg `  S )  =  ran  ( I  |`  F )
39 edgval 25941 . . . . 5  |-  (Edg `  S )  =  ran  (iEdg `  S )
40 df-ima 5127 . . . . 5  |-  ( I
" F )  =  ran  ( I  |`  F )
4138, 39, 403eqtr4ri 2655 . . . 4  |-  ( I
" F )  =  (Edg `  S )
4236, 2, 37, 3, 41issubgr 26163 . . 3  |-  ( ( G  e. UHGraph  /\  S  e. 
_V )  ->  ( S SubGraph  G  <->  ( ( V 
\  { N }
)  C_  V  /\  (iEdg `  S )  =  ( I  |`  dom  (iEdg `  S ) )  /\  ( I " F
)  C_  ~P ( V  \  { N }
) ) ) )
4334, 42sylan2 491 . 2  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  ( S SubGraph  G  <->  ( ( V 
\  { N }
)  C_  V  /\  (iEdg `  S )  =  ( I  |`  dom  (iEdg `  S ) )  /\  ( I " F
)  C_  ~P ( V  \  { N }
) ) ) )
441, 8, 31, 43mpbir3and 1245 1  |-  ( ( G  e. UHGraph  /\  N  e.  V )  ->  S SubGraph  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    e/ wnel 2897   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator