| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfald2 | Structured version Visualization version Unicode version | ||
| Description: Variation on nfald 2165 which adds the hypothesis that |
| Ref | Expression |
|---|---|
| nfald2.1 |
|
| nfald2.2 |
|
| Ref | Expression |
|---|---|
| nfald2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfald2.1 |
. . . . 5
| |
| 2 | nfnae 2318 |
. . . . 5
| |
| 3 | 1, 2 | nfan 1828 |
. . . 4
|
| 4 | nfald2.2 |
. . . 4
| |
| 5 | 3, 4 | nfald 2165 |
. . 3
|
| 6 | 5 | ex 450 |
. 2
|
| 7 | nfa1 2028 |
. . 3
| |
| 8 | biidd 252 |
. . . 4
| |
| 9 | 8 | drnf1 2329 |
. . 3
|
| 10 | 7, 9 | mpbiri 248 |
. 2
|
| 11 | 6, 10 | pm2.61d2 172 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: nfexd2 2332 dvelimf 2334 nfeud2 2482 nfrald 2944 nfiotad 5854 nfixp 7927 |
| Copyright terms: Public domain | W3C validator |