| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeud2 | Structured version Visualization version Unicode version | ||
| Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by Wolf Lammen, 4-Oct-2018.) |
| Ref | Expression |
|---|---|
| nfeud2.1 |
|
| nfeud2.2 |
|
| Ref | Expression |
|---|---|
| nfeud2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2474 |
. 2
| |
| 2 | nfv 1843 |
. . 3
| |
| 3 | nfeud2.1 |
. . . 4
| |
| 4 | nfeud2.2 |
. . . . 5
| |
| 5 | nfeqf1 2299 |
. . . . . 6
| |
| 6 | 5 | adantl 482 |
. . . . 5
|
| 7 | 4, 6 | nfbid 1832 |
. . . 4
|
| 8 | 3, 7 | nfald2 2331 |
. . 3
|
| 9 | 2, 8 | nfexd 2167 |
. 2
|
| 10 | 1, 9 | nfxfrd 1780 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 |
| This theorem is referenced by: nfmod2 2483 nfeud 2484 nfreud 3112 |
| Copyright terms: Public domain | W3C validator |