| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfixp | Structured version Visualization version Unicode version | ||
| Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfixp.1 |
|
| nfixp.2 |
|
| Ref | Expression |
|---|---|
| nfixp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 7909 |
. 2
| |
| 2 | nfcv 2764 |
. . . . 5
| |
| 3 | nftru 1730 |
. . . . . . 7
| |
| 4 | nfcvf 2788 |
. . . . . . . . 9
| |
| 5 | 4 | adantl 482 |
. . . . . . . 8
|
| 6 | nfixp.1 |
. . . . . . . . 9
| |
| 7 | 6 | a1i 11 |
. . . . . . . 8
|
| 8 | 5, 7 | nfeld 2773 |
. . . . . . 7
|
| 9 | 3, 8 | nfabd2 2784 |
. . . . . 6
|
| 10 | 9 | trud 1493 |
. . . . 5
|
| 11 | 2, 10 | nffn 5987 |
. . . 4
|
| 12 | df-ral 2917 |
. . . . 5
| |
| 13 | 2 | a1i 11 |
. . . . . . . . . 10
|
| 14 | 13, 5 | nffvd 6200 |
. . . . . . . . 9
|
| 15 | nfixp.2 |
. . . . . . . . . 10
| |
| 16 | 15 | a1i 11 |
. . . . . . . . 9
|
| 17 | 14, 16 | nfeld 2773 |
. . . . . . . 8
|
| 18 | 8, 17 | nfimd 1823 |
. . . . . . 7
|
| 19 | 3, 18 | nfald2 2331 |
. . . . . 6
|
| 20 | 19 | trud 1493 |
. . . . 5
|
| 21 | 12, 20 | nfxfr 1779 |
. . . 4
|
| 22 | 11, 21 | nfan 1828 |
. . 3
|
| 23 | 22 | nfab 2769 |
. 2
|
| 24 | 1, 23 | nfcxfr 2762 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ixp 7909 |
| This theorem is referenced by: vonioo 40896 |
| Copyright terms: Public domain | W3C validator |