MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffun Structured version   Visualization version   Unicode version

Theorem nffun 5911
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1  |-  F/_ x F
Assertion
Ref Expression
nffun  |-  F/ x Fun  F

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5890 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
2 nffun.1 . . . 4  |-  F/_ x F
32nfrel 5204 . . 3  |-  F/ x Rel  F
42nfcnv 5301 . . . . 5  |-  F/_ x `' F
52, 4nfco 5287 . . . 4  |-  F/_ x
( F  o.  `' F )
6 nfcv 2764 . . . 4  |-  F/_ x  _I
75, 6nfss 3596 . . 3  |-  F/ x
( F  o.  `' F )  C_  _I
83, 7nfan 1828 . 2  |-  F/ x
( Rel  F  /\  ( F  o.  `' F )  C_  _I  )
91, 8nfxfr 1779 1  |-  F/ x Fun  F
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   F/wnf 1708   F/_wnfc 2751    C_ wss 3574    _I cid 5023   `'ccnv 5113    o. ccom 5118   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  nffn  5987  nff1  6099  fliftfun  6562  funimass4f  29437  nfdfat  41210
  Copyright terms: Public domain W3C validator