MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfung Structured version   Visualization version   Unicode version

Theorem sbcfung 5912
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfung  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )

Proof of Theorem sbcfung
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3478 . . 3  |-  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2 sbcrel 5205 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  F  <->  Rel  [_ A  /  x ]_ F ) )
3 sbcal 3485 . . . . 5  |-  ( [. A  /  x ]. A. w E. y A. z
( w F z  ->  z  =  y )  <->  A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y ) )
4 sbcex2 3486 . . . . . . 7  |-  ( [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  E. y [. A  /  x ]. A. z ( w F z  ->  z  =  y ) )
5 sbcal 3485 . . . . . . . . 9  |-  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z [. A  /  x ]. ( w F z  ->  z  =  y ) )
6 sbcimg 3477 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y ) ) )
7 sbcbr123 4706 . . . . . . . . . . . . 13  |-  ( [. A  /  x ]. w F z  <->  [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z
)
8 csbconstg 3546 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ w  =  w )
9 csbconstg 3546 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
108, 9breq12d 4666 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z  <->  w [_ A  /  x ]_ F
z ) )
117, 10syl5bb 272 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  w [_ A  /  x ]_ F
z ) )
12 sbcg 3503 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  =  y  <->  z  =  y ) )
1311, 12imbi12d 334 . . . . . . . . . . 11  |-  ( A  e.  V  ->  (
( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y
)  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
146, 13bitrd 268 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
1514albidv 1849 . . . . . . . . 9  |-  ( A  e.  V  ->  ( A. z [. A  /  x ]. ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
165, 15syl5bb 272 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1716exbidv 1850 . . . . . . 7  |-  ( A  e.  V  ->  ( E. y [. A  /  x ]. A. z ( w F z  -> 
z  =  y )  <->  E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
184, 17syl5bb 272 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y A. z
( w F z  ->  z  =  y )  <->  E. y A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1918albidv 1849 . . . . 5  |-  ( A  e.  V  ->  ( A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
203, 19syl5bb 272 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
212, 20anbi12d 747 . . 3  |-  ( A  e.  V  ->  (
( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) ) )
221, 21syl5bb 272 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w
[_ A  /  x ]_ F z  ->  z  =  y ) ) ) )
23 dffun3 5899 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2423sbcbii 3491 . 2  |-  ( [. A  /  x ]. Fun  F  <->  [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
25 dffun3 5899 . 2  |-  ( Fun  [_ A  /  x ]_ F  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
2622, 24, 253bitr4g 303 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990   [.wsbc 3435   [_csb 3533   class class class wbr 4653   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  sbcfng  6042  esum2dlem  30154
  Copyright terms: Public domain W3C validator