Proof of Theorem nfriotad
| Step | Hyp | Ref
| Expression |
| 1 | | df-riota 6611 |
. 2
⊢
(℩𝑦
∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 2 | | nfriotad.1 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
| 3 | | nfnae 2318 |
. . . . . 6
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
| 4 | 2, 3 | nfan 1828 |
. . . . 5
⊢
Ⅎ𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
| 5 | | nfcvf 2788 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| 6 | 5 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) |
| 7 | | nfriotad.3 |
. . . . . . . 8
⊢ (𝜑 → Ⅎ𝑥𝐴) |
| 8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) |
| 9 | 6, 8 | nfeld 2773 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 10 | | nfriotad.2 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 11 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| 12 | 9, 11 | nfand 1826 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 13 | 4, 12 | nfiotad 5854 |
. . . 4
⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 14 | 13 | ex 450 |
. . 3
⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
| 15 | | nfiota1 5853 |
. . . 4
⊢
Ⅎ𝑦(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 16 | | eqidd 2623 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 17 | 16 | drnfc1 2782 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ Ⅎ𝑦(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)))) |
| 18 | 15, 17 | mpbiri 248 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 19 | 14, 18 | pm2.61d2 172 |
. 2
⊢ (𝜑 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 20 | 1, 19 | nfcxfrd 2763 |
1
⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |