Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk1k3eqk13 Structured version   Visualization version   Unicode version

Theorem ntrk1k3eqk13 38348
Description: An interior function is both monotone and sub-linear if and only if it is finitely linear. (Contributed by RP, 18-Jun-2021.)
Assertion
Ref Expression
ntrk1k3eqk13  |-  ( ( A. s  e.  ~P  B A. t  e.  ~P  B ( s  C_  t  ->  ( I `  s )  C_  (
I `  t )
)  /\  A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `  s )  i^i  ( I `  t ) )  C_  ( I `  (
s  i^i  t )
) )  <->  A. s  e.  ~P  B A. t  e.  ~P  B ( I `
 ( s  i^i  t ) )  =  ( ( I `  s )  i^i  (
I `  t )
) )
Distinct variable groups:    B, s,
t    I, s, t

Proof of Theorem ntrk1k3eqk13
StepHypRef Expression
1 r19.26-2 3065 . 2  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `
 ( s  i^i  t ) )  C_  ( ( I `  s )  i^i  (
I `  t )
)  /\  ( (
I `  s )  i^i  ( I `  t
) )  C_  (
I `  ( s  i^i  t ) ) )  <-> 
( A. s  e. 
~P  B A. t  e.  ~P  B ( I `
 ( s  i^i  t ) )  C_  ( ( I `  s )  i^i  (
I `  t )
)  /\  A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `  s )  i^i  ( I `  t ) )  C_  ( I `  (
s  i^i  t )
) ) )
2 eqss 3618 . . 3  |-  ( ( I `  ( s  i^i  t ) )  =  ( ( I `
 s )  i^i  ( I `  t
) )  <->  ( (
I `  ( s  i^i  t ) )  C_  ( ( I `  s )  i^i  (
I `  t )
)  /\  ( (
I `  s )  i^i  ( I `  t
) )  C_  (
I `  ( s  i^i  t ) ) ) )
322ralbii 2981 . 2  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( I `  ( s  i^i  t
) )  =  ( ( I `  s
)  i^i  ( I `  t ) )  <->  A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `  ( s  i^i  t ) ) 
C_  ( ( I `
 s )  i^i  ( I `  t
) )  /\  (
( I `  s
)  i^i  ( I `  t ) )  C_  ( I `  (
s  i^i  t )
) ) )
4 isotone2 38347 . . 3  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( s  C_  t  ->  ( I `  s )  C_  (
I `  t )
)  <->  A. s  e.  ~P  B A. t  e.  ~P  B ( I `  ( s  i^i  t
) )  C_  (
( I `  s
)  i^i  ( I `  t ) ) )
54anbi1i 731 . 2  |-  ( ( A. s  e.  ~P  B A. t  e.  ~P  B ( s  C_  t  ->  ( I `  s )  C_  (
I `  t )
)  /\  A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `  s )  i^i  ( I `  t ) )  C_  ( I `  (
s  i^i  t )
) )  <->  ( A. s  e.  ~P  B A. t  e.  ~P  B ( I `  ( s  i^i  t
) )  C_  (
( I `  s
)  i^i  ( I `  t ) )  /\  A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `
 s )  i^i  ( I `  t
) )  C_  (
I `  ( s  i^i  t ) ) ) )
61, 3, 53bitr4ri 293 1  |-  ( ( A. s  e.  ~P  B A. t  e.  ~P  B ( s  C_  t  ->  ( I `  s )  C_  (
I `  t )
)  /\  A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `  s )  i^i  ( I `  t ) )  C_  ( I `  (
s  i^i  t )
) )  <->  A. s  e.  ~P  B A. t  e.  ~P  B ( I `
 ( s  i^i  t ) )  =  ( ( I `  s )  i^i  (
I `  t )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   A.wral 2912    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator