Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrkbimka Structured version   Visualization version   Unicode version

Theorem ntrkbimka 38336
Description: If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021.)
Assertion
Ref Expression
ntrkbimka  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( ( s  i^i  t )  =  (/)  ->  ( ( I `
 s )  i^i  ( I `  t
) )  =  (/) )  ->  ( I `  (/) )  =  (/) )
Distinct variable groups:    B, s,
t    I, s, t

Proof of Theorem ntrkbimka
StepHypRef Expression
1 inidm 3822 . 2  |-  ( ( I `  (/) )  i^i  ( I `  (/) ) )  =  ( I `  (/) )
2 0elpw 4834 . . 3  |-  (/)  e.  ~P B
3 ineq1 3807 . . . . . . 7  |-  ( s  =  (/)  ->  ( s  i^i  t )  =  ( (/)  i^i  t
) )
43eqeq1d 2624 . . . . . 6  |-  ( s  =  (/)  ->  ( ( s  i^i  t )  =  (/)  <->  ( (/)  i^i  t
)  =  (/) ) )
5 fveq2 6191 . . . . . . . 8  |-  ( s  =  (/)  ->  ( I `
 s )  =  ( I `  (/) ) )
65ineq1d 3813 . . . . . . 7  |-  ( s  =  (/)  ->  ( ( I `  s )  i^i  ( I `  t ) )  =  ( ( I `  (/) )  i^i  ( I `
 t ) ) )
76eqeq1d 2624 . . . . . 6  |-  ( s  =  (/)  ->  ( ( ( I `  s
)  i^i  ( I `  t ) )  =  (/) 
<->  ( ( I `  (/) )  i^i  ( I `
 t ) )  =  (/) ) )
84, 7imbi12d 334 . . . . 5  |-  ( s  =  (/)  ->  ( ( ( s  i^i  t
)  =  (/)  ->  (
( I `  s
)  i^i  ( I `  t ) )  =  (/) )  <->  ( ( (/)  i^i  t )  =  (/)  ->  ( ( I `  (/) )  i^i  ( I `
 t ) )  =  (/) ) ) )
9 0in 3969 . . . . . 6  |-  ( (/)  i^i  t )  =  (/)
10 pm5.5 351 . . . . . 6  |-  ( (
(/)  i^i  t )  =  (/)  ->  ( (
( (/)  i^i  t )  =  (/)  ->  ( ( I `  (/) )  i^i  ( I `  t
) )  =  (/) ) 
<->  ( ( I `  (/) )  i^i  ( I `
 t ) )  =  (/) ) )
119, 10ax-mp 5 . . . . 5  |-  ( ( ( (/)  i^i  t
)  =  (/)  ->  (
( I `  (/) )  i^i  ( I `  t
) )  =  (/) ) 
<->  ( ( I `  (/) )  i^i  ( I `
 t ) )  =  (/) )
128, 11syl6bb 276 . . . 4  |-  ( s  =  (/)  ->  ( ( ( s  i^i  t
)  =  (/)  ->  (
( I `  s
)  i^i  ( I `  t ) )  =  (/) )  <->  ( ( I `
 (/) )  i^i  (
I `  t )
)  =  (/) ) )
13 fveq2 6191 . . . . . 6  |-  ( t  =  (/)  ->  ( I `
 t )  =  ( I `  (/) ) )
1413ineq2d 3814 . . . . 5  |-  ( t  =  (/)  ->  ( ( I `  (/) )  i^i  ( I `  t
) )  =  ( ( I `  (/) )  i^i  ( I `  (/) ) ) )
1514eqeq1d 2624 . . . 4  |-  ( t  =  (/)  ->  ( ( ( I `  (/) )  i^i  ( I `  t
) )  =  (/)  <->  (
( I `  (/) )  i^i  ( I `  (/) ) )  =  (/) ) )
1612, 15rspc2v 3322 . . 3  |-  ( (
(/)  e.  ~P B  /\  (/)  e.  ~P B
)  ->  ( A. s  e.  ~P  B A. t  e.  ~P  B ( ( s  i^i  t )  =  (/)  ->  ( ( I `
 s )  i^i  ( I `  t
) )  =  (/) )  ->  ( ( I `
 (/) )  i^i  (
I `  (/) ) )  =  (/) ) )
172, 2, 16mp2an 708 . 2  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( ( s  i^i  t )  =  (/)  ->  ( ( I `
 s )  i^i  ( I `  t
) )  =  (/) )  ->  ( ( I `
 (/) )  i^i  (
I `  (/) ) )  =  (/) )
181, 17syl5eqr 2670 1  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( ( s  i^i  t )  =  (/)  ->  ( ( I `
 s )  i^i  ( I `  t
) )  =  (/) )  ->  ( I `  (/) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator