MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orordir Structured version   Visualization version   Unicode version

Theorem orordir 553
Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
Assertion
Ref Expression
orordir  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ( ph  \/  ch )  \/  ( ps  \/  ch ) ) )

Proof of Theorem orordir
StepHypRef Expression
1 oridm 536 . . 3  |-  ( ( ch  \/  ch )  <->  ch )
21orbi2i 541 . 2  |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  ch ) )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
3 or4 550 . 2  |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  ch ) )  <->  ( ( ph  \/  ch )  \/  ( ps  \/  ch ) ) )
42, 3bitr3i 266 1  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ( ph  \/  ch )  \/  ( ps  \/  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  sspsstri  3709  psslinpr  9853  elznn0  11392  tosso  17036  legso  25494
  Copyright terms: Public domain W3C validator