MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Structured version   Visualization version   Unicode version

Theorem psslinpr 9853
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )

Proof of Theorem psslinpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 9813 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  x  e.  Q. )
2 prub 9816 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  x  e.  Q. )  ->  ( -.  x  e.  B  ->  y  <Q  x ) )
31, 2sylan2 491 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  <Q  x ) )
4 prcdnq 9815 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
54adantl 482 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( y  <Q  x  ->  y  e.  A ) )
63, 5syld 47 . . . . . . . . . . 11  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  e.  A ) )
76exp43 640 . . . . . . . . . 10  |-  ( B  e.  P.  ->  (
y  e.  B  -> 
( A  e.  P.  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
87com3r 87 . . . . . . . . 9  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( y  e.  B  -> 
( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
98imp 445 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) )
109imp4a 614 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  y  e.  A ) ) )
1110com23 86 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  (
y  e.  B  -> 
y  e.  A ) ) )
1211alrimdv 1857 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
1312exlimdv 1861 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x ( x  e.  A  /\  -.  x  e.  B
)  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
14 nss 3663 . . . . 5  |-  ( -.  A  C_  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
15 sspss 3706 . . . . 5  |-  ( A 
C_  B  <->  ( A  C.  B  \/  A  =  B ) )
1614, 15xchnxbi 322 . . . 4  |-  ( -.  ( A  C.  B  \/  A  =  B
)  <->  E. x ( x  e.  A  /\  -.  x  e.  B )
)
17 sspss 3706 . . . . 5  |-  ( B 
C_  A  <->  ( B  C.  A  \/  B  =  A ) )
18 dfss2 3591 . . . . 5  |-  ( B 
C_  A  <->  A. y
( y  e.  B  ->  y  e.  A ) )
1917, 18bitr3i 266 . . . 4  |-  ( ( B  C.  A  \/  B  =  A )  <->  A. y ( y  e.  B  ->  y  e.  A ) )
2013, 16, 193imtr4g 285 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( -.  ( A 
C.  B  \/  A  =  B )  ->  ( B  C.  A  \/  B  =  A ) ) )
2120orrd 393 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
22 df-3or 1038 . . 3  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  B  C.  A ) )
23 or32 549 . . 3  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  B  C.  A )  <->  ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B ) )
24 orordir 553 . . . 4  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
25 eqcom 2629 . . . . . 6  |-  ( B  =  A  <->  A  =  B )
2625orbi2i 541 . . . . 5  |-  ( ( B  C.  A  \/  B  =  A )  <->  ( B  C.  A  \/  A  =  B )
)
2726orbi2i 541 . . . 4  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  ( B 
C.  A  \/  B  =  A ) )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
2824, 27bitr4i 267 . . 3  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
2922, 23, 283bitri 286 . 2  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
3021, 29sylibr 224 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    C_ wss 3574    C. wpss 3575   class class class wbr 4653   Q.cnq 9674    <Q cltq 9680   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-ltpq 9732  df-enq 9733  df-nq 9734  df-ltnq 9740  df-np 9803
This theorem is referenced by:  ltsopr  9854
  Copyright terms: Public domain W3C validator