MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspsstri Structured version   Visualization version   Unicode version

Theorem sspsstri 3709
Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
sspsstri  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )

Proof of Theorem sspsstri
StepHypRef Expression
1 or32 549 . 2  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  B  C.  A ) )
2 sspss 3706 . . . 4  |-  ( A 
C_  B  <->  ( A  C.  B  \/  A  =  B ) )
3 sspss 3706 . . . . 5  |-  ( B 
C_  A  <->  ( B  C.  A  \/  B  =  A ) )
4 eqcom 2629 . . . . . 6  |-  ( B  =  A  <->  A  =  B )
54orbi2i 541 . . . . 5  |-  ( ( B  C.  A  \/  B  =  A )  <->  ( B  C.  A  \/  A  =  B )
)
63, 5bitri 264 . . . 4  |-  ( B 
C_  A  <->  ( B  C.  A  \/  A  =  B ) )
72, 6orbi12i 543 . . 3  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
8 orordir 553 . . 3  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
97, 8bitr4i 267 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B ) )
10 df-3or 1038 . 2  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  B  C.  A ) )
111, 9, 103bitr4i 292 1  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    \/ w3o 1036    = wceq 1483    C_ wss 3574    C. wpss 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ne 2795  df-in 3581  df-ss 3588  df-pss 3590
This theorem is referenced by:  ordtri3or  5755  sorpss  6942  sorpssi  6943  funpsstri  31663
  Copyright terms: Public domain W3C validator