| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tosso | Structured version Visualization version Unicode version | ||
| Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| tosso.b |
|
| tosso.l |
|
| tosso.s |
|
| Ref | Expression |
|---|---|
| tosso |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tosso.b |
. . . . . . . . 9
| |
| 2 | tosso.l |
. . . . . . . . 9
| |
| 3 | tosso.s |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | pleval2 16965 |
. . . . . . . 8
|
| 5 | 4 | 3expb 1266 |
. . . . . . 7
|
| 6 | 1, 2, 3 | pleval2 16965 |
. . . . . . . . . 10
|
| 7 | equcom 1945 |
. . . . . . . . . . 11
| |
| 8 | 7 | orbi2i 541 |
. . . . . . . . . 10
|
| 9 | 6, 8 | syl6bb 276 |
. . . . . . . . 9
|
| 10 | 9 | 3com23 1271 |
. . . . . . . 8
|
| 11 | 10 | 3expb 1266 |
. . . . . . 7
|
| 12 | 5, 11 | orbi12d 746 |
. . . . . 6
|
| 13 | df-3or 1038 |
. . . . . . 7
| |
| 14 | or32 549 |
. . . . . . . 8
| |
| 15 | orordir 553 |
. . . . . . . 8
| |
| 16 | 14, 15 | bitri 264 |
. . . . . . 7
|
| 17 | 13, 16 | bitri 264 |
. . . . . 6
|
| 18 | 12, 17 | syl6bbr 278 |
. . . . 5
|
| 19 | 18 | 2ralbidva 2988 |
. . . 4
|
| 20 | 19 | pm5.32i 669 |
. . 3
|
| 21 | 1, 2, 3 | pospo 16973 |
. . . 4
|
| 22 | 21 | anbi1d 741 |
. . 3
|
| 23 | 20, 22 | syl5bb 272 |
. 2
|
| 24 | 1, 2 | istos 17035 |
. 2
|
| 25 | df-so 5036 |
. . . 4
| |
| 26 | 25 | anbi1i 731 |
. . 3
|
| 27 | an32 839 |
. . 3
| |
| 28 | 26, 27 | bitri 264 |
. 2
|
| 29 | 23, 24, 28 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-preset 16928 df-poset 16946 df-plt 16958 df-toset 17034 |
| This theorem is referenced by: opsrtoslem2 19485 opsrso 19487 retos 19964 toslub 29668 tosglb 29670 orngsqr 29804 |
| Copyright terms: Public domain | W3C validator |