MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otel3xp Structured version   Visualization version   Unicode version

Theorem otel3xp 5153
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.)
Assertion
Ref Expression
otel3xp  |-  ( ( T  =  <. A ,  B ,  C >.  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
) )  ->  T  e.  ( ( X  X.  Y )  X.  Z
) )

Proof of Theorem otel3xp
StepHypRef Expression
1 df-ot 4186 . . . 4  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 3simpa 1058 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A  e.  X  /\  B  e.  Y
) )
3 opelxp 5146 . . . . . 6  |-  ( <. A ,  B >.  e.  ( X  X.  Y
)  <->  ( A  e.  X  /\  B  e.  Y ) )
42, 3sylibr 224 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  -> 
<. A ,  B >.  e.  ( X  X.  Y
) )
5 simp3 1063 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  C  e.  Z )
64, 5opelxpd 5149 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  -> 
<. <. A ,  B >. ,  C >.  e.  ( ( X  X.  Y
)  X.  Z ) )
71, 6syl5eqel 2705 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  -> 
<. A ,  B ,  C >.  e.  ( ( X  X.  Y )  X.  Z ) )
8 eleq1 2689 . . 3  |-  ( T  =  <. A ,  B ,  C >.  ->  ( T  e.  ( ( X  X.  Y )  X.  Z )  <->  <. A ,  B ,  C >.  e.  ( ( X  X.  Y )  X.  Z
) ) )
97, 8syl5ibr 236 . 2  |-  ( T  =  <. A ,  B ,  C >.  ->  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  T  e.  ( ( X  X.  Y )  X.  Z ) ) )
109imp 445 1  |-  ( ( T  =  <. A ,  B ,  C >.  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
) )  ->  T  e.  ( ( X  X.  Y )  X.  Z
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   <.cotp 4185    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-opab 4713  df-xp 5120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator