Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.12 Structured version   Visualization version   Unicode version

Theorem pm14.12 38622
Description: Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
pm14.12  |-  ( E! x ph  ->  A. x A. y ( ( ph  /\ 
[. y  /  x ]. ph )  ->  x  =  y ) )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem pm14.12
StepHypRef Expression
1 eumo 2499 . 2  |-  ( E! x ph  ->  E* x ph )
2 nfv 1843 . . . 4  |-  F/ y
ph
32mo3 2507 . . 3  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
4 sbsbc 3439 . . . . . 6  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
54anbi2i 730 . . . . 5  |-  ( (
ph  /\  [ y  /  x ] ph )  <->  (
ph  /\  [. y  /  x ]. ph ) )
65imbi1i 339 . . . 4  |-  ( ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y )  <->  ( ( ph  /\  [. y  /  x ]. ph )  ->  x  =  y )
)
762albii 1748 . . 3  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  <->  A. x A. y ( ( ph  /\  [. y  /  x ]. ph )  ->  x  =  y ) )
83, 7bitri 264 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[. y  /  x ]. ph )  ->  x  =  y ) )
91, 8sylib 208 1  |-  ( E! x ph  ->  A. x A. y ( ( ph  /\ 
[. y  /  x ]. ph )  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   [wsb 1880   E!weu 2470   E*wmo 2471   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-sbc 3436
This theorem is referenced by:  pm14.24  38633
  Copyright terms: Public domain W3C validator