| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mo3 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of
"at most one." Definition of [BellMachover]
p. 460, except that definition has the side condition that |
| Ref | Expression |
|---|---|
| mo3.1 |
|
| Ref | Expression |
|---|---|
| mo3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmo1 2481 |
. . 3
| |
| 2 | mo3.1 |
. . . . 5
| |
| 3 | 2 | nfmo 2487 |
. . . 4
|
| 4 | mo2v 2477 |
. . . . 5
| |
| 5 | sp 2053 |
. . . . . . . 8
| |
| 6 | spsbim 2394 |
. . . . . . . . 9
| |
| 7 | equsb3 2432 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl6ib 241 |
. . . . . . . 8
|
| 9 | 5, 8 | anim12d 586 |
. . . . . . 7
|
| 10 | equtr2 1954 |
. . . . . . 7
| |
| 11 | 9, 10 | syl6 35 |
. . . . . 6
|
| 12 | 11 | exlimiv 1858 |
. . . . 5
|
| 13 | 4, 12 | sylbi 207 |
. . . 4
|
| 14 | 3, 13 | alrimi 2082 |
. . 3
|
| 15 | 1, 14 | alrimi 2082 |
. 2
|
| 16 | nfs1v 2437 |
. . . . . . . 8
| |
| 17 | pm3.21 464 |
. . . . . . . . 9
| |
| 18 | 17 | imim1d 82 |
. . . . . . . 8
|
| 19 | 16, 18 | alimd 2081 |
. . . . . . 7
|
| 20 | 19 | com12 32 |
. . . . . 6
|
| 21 | 20 | aleximi 1759 |
. . . . 5
|
| 22 | 2 | sb8e 2425 |
. . . . 5
|
| 23 | 2 | mo2 2479 |
. . . . 5
|
| 24 | 21, 22, 23 | 3imtr4g 285 |
. . . 4
|
| 25 | moabs 2501 |
. . . 4
| |
| 26 | 24, 25 | sylibr 224 |
. . 3
|
| 27 | 26 | alcoms 2035 |
. 2
|
| 28 | 15, 27 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: mo 2508 eu2 2509 mo4f 2516 2mo 2551 rmo3 3528 isarep2 5978 mo5f 29324 rmo3f 29335 rmo4fOLD 29336 bnj580 30983 pm14.12 38622 |
| Copyright terms: Public domain | W3C validator |