MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq1b Structured version   Visualization version   Unicode version

Theorem preq1b 4377
Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020.)
Hypotheses
Ref Expression
preq1b.a  |-  ( ph  ->  A  e.  V )
preq1b.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
preq1b  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  <->  A  =  B ) )

Proof of Theorem preq1b
StepHypRef Expression
1 preq1b.a . . . . . . . 8  |-  ( ph  ->  A  e.  V )
2 prid1g 4295 . . . . . . . 8  |-  ( A  e.  V  ->  A  e.  { A ,  C } )
31, 2syl 17 . . . . . . 7  |-  ( ph  ->  A  e.  { A ,  C } )
4 eleq2 2690 . . . . . . 7  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  e. 
{ A ,  C } 
<->  A  e.  { B ,  C } ) )
53, 4syl5ibcom 235 . . . . . 6  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  ->  A  e.  { B ,  C } ) )
6 elprg 4196 . . . . . . 7  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
71, 6syl 17 . . . . . 6  |-  ( ph  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C )
) )
85, 7sylibd 229 . . . . 5  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) ) )
98imp 445 . . . 4  |-  ( (
ph  /\  { A ,  C }  =  { B ,  C }
)  ->  ( A  =  B  \/  A  =  C ) )
10 preq1b.b . . . . . . . 8  |-  ( ph  ->  B  e.  W )
11 prid1g 4295 . . . . . . . 8  |-  ( B  e.  W  ->  B  e.  { B ,  C } )
1210, 11syl 17 . . . . . . 7  |-  ( ph  ->  B  e.  { B ,  C } )
13 eleq2 2690 . . . . . . 7  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  e. 
{ A ,  C } 
<->  B  e.  { B ,  C } ) )
1412, 13syl5ibrcom 237 . . . . . 6  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  ->  B  e.  { A ,  C } ) )
15 elprg 4196 . . . . . . 7  |-  ( B  e.  W  ->  ( B  e.  { A ,  C }  <->  ( B  =  A  \/  B  =  C ) ) )
1610, 15syl 17 . . . . . 6  |-  ( ph  ->  ( B  e.  { A ,  C }  <->  ( B  =  A  \/  B  =  C )
) )
1714, 16sylibd 229 . . . . 5  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) ) )
1817imp 445 . . . 4  |-  ( (
ph  /\  { A ,  C }  =  { B ,  C }
)  ->  ( B  =  A  \/  B  =  C ) )
19 eqcom 2629 . . . 4  |-  ( A  =  B  <->  B  =  A )
20 eqeq2 2633 . . . 4  |-  ( A  =  C  ->  ( B  =  A  <->  B  =  C ) )
219, 18, 19, 20oplem1 1007 . . 3  |-  ( (
ph  /\  { A ,  C }  =  { B ,  C }
)  ->  A  =  B )
2221ex 450 . 2  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  ->  A  =  B ) )
23 preq1 4268 . 2  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)
2422, 23impbid1 215 1  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  preq2b  4378  preqr1  4379  preqr1g  4385  uhgr3cyclexlem  27041
  Copyright terms: Public domain W3C validator