MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq2b Structured version   Visualization version   Unicode version

Theorem preq2b 4378
Description: Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.)
Hypotheses
Ref Expression
preq1b.a  |-  ( ph  ->  A  e.  V )
preq1b.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
preq2b  |-  ( ph  ->  ( { C ,  A }  =  { C ,  B }  <->  A  =  B ) )

Proof of Theorem preq2b
StepHypRef Expression
1 prcom 4267 . . 3  |-  { C ,  A }  =  { A ,  C }
2 prcom 4267 . . 3  |-  { C ,  B }  =  { B ,  C }
31, 2eqeq12i 2636 . 2  |-  ( { C ,  A }  =  { C ,  B } 
<->  { A ,  C }  =  { B ,  C } )
4 preq1b.a . . 3  |-  ( ph  ->  A  e.  V )
5 preq1b.b . . 3  |-  ( ph  ->  B  e.  W )
64, 5preq1b 4377 . 2  |-  ( ph  ->  ( { A ,  C }  =  { B ,  C }  <->  A  =  B ) )
73, 6syl5bb 272 1  |-  ( ph  ->  ( { C ,  A }  =  { C ,  B }  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  umgr2v2enb1  26422  clsk1indlem4  38342
  Copyright terms: Public domain W3C validator