MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsspw Structured version   Visualization version   Unicode version

Theorem prsspw 4376
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.)
Hypotheses
Ref Expression
prsspw.1  |-  A  e. 
_V
prsspw.2  |-  B  e. 
_V
Assertion
Ref Expression
prsspw  |-  ( { A ,  B }  C_ 
~P C  <->  ( A  C_  C  /\  B  C_  C ) )

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . 2  |-  A  e. 
_V
2 prsspw.2 . 2  |-  B  e. 
_V
3 prsspwg 4355 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )
41, 2, 3mp2an 708 1  |-  ( { A ,  B }  C_ 
~P C  <->  ( A  C_  C  /\  B  C_  C ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-pw 4160  df-sn 4178  df-pr 4180
This theorem is referenced by:  altxpsspw  32084
  Copyright terms: Public domain W3C validator