Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem4 Structured version   Visualization version   Unicode version

Theorem clsk1indlem4 38342
Description: The ansatz closure function  ( r  e. 
~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r )
) has the K4 property of idempotence. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k  |-  K  =  ( r  e.  ~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r ) )
Assertion
Ref Expression
clsk1indlem4  |-  A. s  e.  ~P  3o ( K `
 ( K `  s ) )  =  ( K `  s
)
Distinct variable group:    s, r
Allowed substitution hints:    K( s, r)

Proof of Theorem clsk1indlem4
StepHypRef Expression
1 tpex 6957 . . . . . . . . . 10  |-  { (/) ,  1o ,  2o }  e.  _V
21a1i 11 . . . . . . . . 9  |-  ( T. 
->  { (/) ,  1o ,  2o }  e.  _V )
3 snsstp1 4347 . . . . . . . . . . . 12  |-  { (/) } 
C_  { (/) ,  1o ,  2o }
43a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  { (/) }  C_  { (/) ,  1o ,  2o }
)
5 0ex 4790 . . . . . . . . . . . 12  |-  (/)  e.  _V
65snss 4316 . . . . . . . . . . 11  |-  ( (/)  e.  { (/) ,  1o ,  2o }  <->  { (/) }  C_  { (/) ,  1o ,  2o }
)
74, 6sylibr 224 . . . . . . . . . 10  |-  ( T. 
->  (/)  e.  { (/) ,  1o ,  2o }
)
8 snsstp2 4348 . . . . . . . . . . . 12  |-  { 1o }  C_  { (/) ,  1o ,  2o }
98a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  { 1o }  C_  {
(/) ,  1o ,  2o } )
10 1on 7567 . . . . . . . . . . . . 13  |-  1o  e.  On
1110elexi 3213 . . . . . . . . . . . 12  |-  1o  e.  _V
1211snss 4316 . . . . . . . . . . 11  |-  ( 1o  e.  { (/) ,  1o ,  2o }  <->  { 1o }  C_  { (/) ,  1o ,  2o } )
139, 12sylibr 224 . . . . . . . . . 10  |-  ( T. 
->  1o  e.  { (/) ,  1o ,  2o }
)
147, 13prssd 4354 . . . . . . . . 9  |-  ( T. 
->  { (/) ,  1o }  C_ 
{ (/) ,  1o ,  2o } )
152, 14sselpwd 4807 . . . . . . . 8  |-  ( T. 
->  { (/) ,  1o }  e.  ~P { (/) ,  1o ,  2o } )
1615trud 1493 . . . . . . 7  |-  { (/) ,  1o }  e.  ~P { (/) ,  1o ,  2o }
17 df3o2 38322 . . . . . . . 8  |-  3o  =  { (/) ,  1o ,  2o }
1817pweqi 4162 . . . . . . 7  |-  ~P 3o  =  ~P { (/) ,  1o ,  2o }
1916, 18eleqtrri 2700 . . . . . 6  |-  { (/) ,  1o }  e.  ~P 3o
2019a1i 11 . . . . 5  |-  ( s  e.  ~P 3o  ->  {
(/) ,  1o }  e.  ~P 3o )
21 id 22 . . . . 5  |-  ( s  e.  ~P 3o  ->  s  e.  ~P 3o )
2220, 21ifcld 4131 . . . 4  |-  ( s  e.  ~P 3o  ->  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  e.  ~P 3o )
23 eqeq1 2626 . . . . . . . 8  |-  ( r  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  -> 
( r  =  { (/)
}  <->  if ( s  =  { (/) } ,  { (/)
,  1o } , 
s )  =  { (/)
} ) )
24 eqcom 2629 . . . . . . . . 9  |-  ( if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  =  { (/) }  <->  { (/) }  =  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s ) )
25 eqif 4126 . . . . . . . . 9  |-  ( {
(/) }  =  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  <->  ( ( s  =  { (/) }  /\  {
(/) }  =  { (/)
,  1o } )  \/  ( -.  s  =  { (/) }  /\  { (/)
}  =  s ) ) )
2624, 25bitri 264 . . . . . . . 8  |-  ( if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  =  { (/) }  <-> 
( ( s  =  { (/) }  /\  { (/)
}  =  { (/) ,  1o } )  \/  ( -.  s  =  { (/) }  /\  { (/)
}  =  s ) ) )
2723, 26syl6bb 276 . . . . . . 7  |-  ( r  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  -> 
( r  =  { (/)
}  <->  ( ( s  =  { (/) }  /\  {
(/) }  =  { (/)
,  1o } )  \/  ( -.  s  =  { (/) }  /\  { (/)
}  =  s ) ) ) )
28 id 22 . . . . . . 7  |-  ( r  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  -> 
r  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )
)
2927, 28ifbieq2d 4111 . . . . . 6  |-  ( r  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  ->  if ( r  =  { (/)
} ,  { (/) ,  1o } ,  r )  =  if ( ( ( s  =  { (/) }  /\  { (/)
}  =  { (/) ,  1o } )  \/  ( -.  s  =  { (/) }  /\  { (/)
}  =  s ) ) ,  { (/) ,  1o } ,  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s ) ) )
30 1n0 7575 . . . . . . . . . 10  |-  1o  =/=  (/)
31 dfsn2 4190 . . . . . . . . . . . 12  |-  { (/) }  =  { (/) ,  (/) }
3231eqeq1i 2627 . . . . . . . . . . 11  |-  ( {
(/) }  =  { (/)
,  1o }  <->  { (/) ,  (/) }  =  { (/) ,  1o } )
335a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  (/)  e.  _V )
3410a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  1o  e.  On )
3533, 34preq2b 4378 . . . . . . . . . . . 12  |-  ( T. 
->  ( { (/) ,  (/) }  =  { (/) ,  1o } 
<->  (/)  =  1o ) )
3635trud 1493 . . . . . . . . . . 11  |-  ( {
(/) ,  (/) }  =  { (/) ,  1o }  <->  (/)  =  1o )
37 eqcom 2629 . . . . . . . . . . 11  |-  ( (/)  =  1o  <->  1o  =  (/) )
3832, 36, 373bitri 286 . . . . . . . . . 10  |-  ( {
(/) }  =  { (/)
,  1o }  <->  1o  =  (/) )
3930, 38nemtbir 2889 . . . . . . . . 9  |-  -.  { (/)
}  =  { (/) ,  1o }
4039intnan 960 . . . . . . . 8  |-  -.  (
s  =  { (/) }  /\  { (/) }  =  { (/) ,  1o }
)
41 pm3.24 926 . . . . . . . . 9  |-  -.  (
s  =  { (/) }  /\  -.  s  =  { (/) } )
42 eqcom 2629 . . . . . . . . . 10  |-  ( s  =  { (/) }  <->  { (/) }  =  s )
4342anbi2ci 732 . . . . . . . . 9  |-  ( ( s  =  { (/) }  /\  -.  s  =  { (/) } )  <->  ( -.  s  =  { (/) }  /\  {
(/) }  =  s
) )
4441, 43mtbi 312 . . . . . . . 8  |-  -.  ( -.  s  =  { (/)
}  /\  { (/) }  =  s )
4540, 44pm3.2ni 899 . . . . . . 7  |-  -.  (
( s  =  { (/)
}  /\  { (/) }  =  { (/) ,  1o }
)  \/  ( -.  s  =  { (/) }  /\  { (/) }  =  s ) )
4645iffalsei 4096 . . . . . 6  |-  if ( ( ( s  =  { (/) }  /\  { (/)
}  =  { (/) ,  1o } )  \/  ( -.  s  =  { (/) }  /\  { (/)
}  =  s ) ) ,  { (/) ,  1o } ,  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s ) )  =  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )
4729, 46syl6eq 2672 . . . . 5  |-  ( r  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  ->  if ( r  =  { (/)
} ,  { (/) ,  1o } ,  r )  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )
)
48 clsk1indlem.k . . . . 5  |-  K  =  ( r  e.  ~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r ) )
49 prex 4909 . . . . . 6  |-  { (/) ,  1o }  e.  _V
50 vex 3203 . . . . . 6  |-  s  e. 
_V
5149, 50ifex 4156 . . . . 5  |-  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )  e.  _V
5247, 48, 51fvmpt 6282 . . . 4  |-  ( if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s )  e.  ~P 3o  ->  ( K `  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s ) )  =  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s ) )
5322, 52syl 17 . . 3  |-  ( s  e.  ~P 3o  ->  ( K `  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )
)  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )
)
54 eqeq1 2626 . . . . . 6  |-  ( r  =  s  ->  (
r  =  { (/) }  <-> 
s  =  { (/) } ) )
55 id 22 . . . . . 6  |-  ( r  =  s  ->  r  =  s )
5654, 55ifbieq2d 4111 . . . . 5  |-  ( r  =  s  ->  if ( r  =  { (/)
} ,  { (/) ,  1o } ,  r )  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s )
)
5756, 48, 51fvmpt 6282 . . . 4  |-  ( s  e.  ~P 3o  ->  ( K `  s )  =  if ( s  =  { (/) } ,  { (/) ,  1o } ,  s ) )
5857fveq2d 6195 . . 3  |-  ( s  e.  ~P 3o  ->  ( K `  ( K `
 s ) )  =  ( K `  if ( s  =  { (/)
} ,  { (/) ,  1o } ,  s ) ) )
5953, 58, 573eqtr4d 2666 . 2  |-  ( s  e.  ~P 3o  ->  ( K `  ( K `
 s ) )  =  ( K `  s ) )
6059rgen 2922 1  |-  A. s  e.  ~P  3o ( K `
 ( K `  s ) )  =  ( K `  s
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   {ctp 4181    |-> cmpt 4729   Oncon0 5723   ` cfv 5888   1oc1o 7553   2oc2o 7554   3oc3o 7555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-1o 7560  df-2o 7561  df-3o 7562
This theorem is referenced by:  clsk1independent  38344
  Copyright terms: Public domain W3C validator