MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Structured version   Visualization version   Unicode version

Theorem prprc1 4300
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1  |-  ( -.  A  e.  _V  ->  { A ,  B }  =  { B } )

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4253 . 2  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
2 uneq1 3760 . . 3  |-  ( { A }  =  (/)  ->  ( { A }  u.  { B } )  =  ( (/)  u.  { B } ) )
3 df-pr 4180 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
4 uncom 3757 . . . 4  |-  ( (/)  u. 
{ B } )  =  ( { B }  u.  (/) )
5 un0 3967 . . . 4  |-  ( { B }  u.  (/) )  =  { B }
64, 5eqtr2i 2645 . . 3  |-  { B }  =  ( (/)  u.  { B } )
72, 3, 63eqtr4g 2681 . 2  |-  ( { A }  =  (/)  ->  { A ,  B }  =  { B } )
81, 7sylbi 207 1  |-  ( -.  A  e.  _V  ->  { A ,  B }  =  { B } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   (/)c0 3915   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  prprc2  4301  prprc  4302  prex  4909  elprchashprn2  13184  elsprel  41725
  Copyright terms: Public domain W3C validator