Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsprel Structured version   Visualization version   Unicode version

Theorem elsprel 41725
Description: An unordered pair is an element of all unordered pairs. At least one of the two elements of the unordered pair must be a set. Otherwise, the unordered pair would be the empty set, see prprc 4302, which is not an element of all unordered pairs, see spr0nelg 41726. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
elsprel  |-  ( ( A  e.  V  \/  B  e.  W )  ->  { A ,  B }  e.  { p  |  E. a E. b  p  =  { a ,  b } }
)
Distinct variable groups:    A, a,
b, p    B, a,
b, p
Allowed substitution hints:    V( p, a, b)    W( p, a, b)

Proof of Theorem elsprel
StepHypRef Expression
1 elex 3212 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 3212 . . . 4  |-  ( B  e.  W  ->  B  e.  _V )
31, 2orim12i 538 . . 3  |-  ( ( A  e.  V  \/  B  e.  W )  ->  ( A  e.  _V  \/  B  e.  _V ) )
4 elisset 3215 . . . . . . 7  |-  ( A  e.  _V  ->  E. a 
a  =  A )
5 elisset 3215 . . . . . . 7  |-  ( B  e.  _V  ->  E. b 
b  =  B )
6 eeanv 2182 . . . . . . . 8  |-  ( E. a E. b ( a  =  A  /\  b  =  B )  <->  ( E. a  a  =  A  /\  E. b 
b  =  B ) )
7 preq12 4270 . . . . . . . . . 10  |-  ( ( a  =  A  /\  b  =  B )  ->  { a ,  b }  =  { A ,  B } )
87eqcomd 2628 . . . . . . . . 9  |-  ( ( a  =  A  /\  b  =  B )  ->  { A ,  B }  =  { a ,  b } )
982eximi 1763 . . . . . . . 8  |-  ( E. a E. b ( a  =  A  /\  b  =  B )  ->  E. a E. b { A ,  B }  =  { a ,  b } )
106, 9sylbir 225 . . . . . . 7  |-  ( ( E. a  a  =  A  /\  E. b 
b  =  B )  ->  E. a E. b { A ,  B }  =  { a ,  b } )
114, 5, 10syl2an 494 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  E. a E. b { A ,  B }  =  { a ,  b } )
1211expcom 451 . . . . 5  |-  ( B  e.  _V  ->  ( A  e.  _V  ->  E. a E. b { A ,  B }  =  { a ,  b } ) )
13 preq2 4269 . . . . . . . . . . . . . 14  |-  ( b  =  a  ->  { a ,  b }  =  { a ,  a } )
1413adantr 481 . . . . . . . . . . . . 13  |-  ( ( b  =  a  /\  a  =  A )  ->  { a ,  b }  =  { a ,  a } )
15 dfsn2 4190 . . . . . . . . . . . . . 14  |-  { a }  =  { a ,  a }
16 sneq 4187 . . . . . . . . . . . . . . 15  |-  ( a  =  A  ->  { a }  =  { A } )
1716adantl 482 . . . . . . . . . . . . . 14  |-  ( ( b  =  a  /\  a  =  A )  ->  { a }  =  { A } )
1815, 17syl5eqr 2670 . . . . . . . . . . . . 13  |-  ( ( b  =  a  /\  a  =  A )  ->  { a ,  a }  =  { A } )
1914, 18eqtr2d 2657 . . . . . . . . . . . 12  |-  ( ( b  =  a  /\  a  =  A )  ->  { A }  =  { a ,  b } )
2019ex 450 . . . . . . . . . . 11  |-  ( b  =  a  ->  (
a  =  A  ->  { A }  =  {
a ,  b } ) )
2120spimev 2259 . . . . . . . . . 10  |-  ( a  =  A  ->  E. b { A }  =  {
a ,  b } )
2221adantl 482 . . . . . . . . 9  |-  ( ( -.  B  e.  _V  /\  a  =  A )  ->  E. b { A }  =  { a ,  b } )
23 prprc2 4301 . . . . . . . . . . . 12  |-  ( -.  B  e.  _V  ->  { A ,  B }  =  { A } )
2423adantr 481 . . . . . . . . . . 11  |-  ( ( -.  B  e.  _V  /\  a  =  A )  ->  { A ,  B }  =  { A } )
2524eqeq1d 2624 . . . . . . . . . 10  |-  ( ( -.  B  e.  _V  /\  a  =  A )  ->  ( { A ,  B }  =  {
a ,  b }  <->  { A }  =  {
a ,  b } ) )
2625exbidv 1850 . . . . . . . . 9  |-  ( ( -.  B  e.  _V  /\  a  =  A )  ->  ( E. b { A ,  B }  =  { a ,  b }  <->  E. b { A }  =  { a ,  b } ) )
2722, 26mpbird 247 . . . . . . . 8  |-  ( ( -.  B  e.  _V  /\  a  =  A )  ->  E. b { A ,  B }  =  {
a ,  b } )
2827ex 450 . . . . . . 7  |-  ( -.  B  e.  _V  ->  ( a  =  A  ->  E. b { A ,  B }  =  {
a ,  b } ) )
2928eximdv 1846 . . . . . 6  |-  ( -.  B  e.  _V  ->  ( E. a  a  =  A  ->  E. a E. b { A ,  B }  =  {
a ,  b } ) )
304, 29syl5 34 . . . . 5  |-  ( -.  B  e.  _V  ->  ( A  e.  _V  ->  E. a E. b { A ,  B }  =  { a ,  b } ) )
3112, 30pm2.61i 176 . . . 4  |-  ( A  e.  _V  ->  E. a E. b { A ,  B }  =  {
a ,  b } )
3211ex 450 . . . . 5  |-  ( A  e.  _V  ->  ( B  e.  _V  ->  E. a E. b { A ,  B }  =  { a ,  b } ) )
33 preq1 4268 . . . . . . . . . . . . . . . . 17  |-  ( a  =  b  ->  { a ,  b }  =  { b ,  b } )
3433adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( a  =  b  /\  b  =  B )  ->  { a ,  b }  =  { b ,  b } )
35 dfsn2 4190 . . . . . . . . . . . . . . . . 17  |-  { b }  =  { b ,  b }
36 sneq 4187 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  B  ->  { b }  =  { B } )
3736adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( a  =  b  /\  b  =  B )  ->  { b }  =  { B } )
3835, 37syl5eqr 2670 . . . . . . . . . . . . . . . 16  |-  ( ( a  =  b  /\  b  =  B )  ->  { b ,  b }  =  { B } )
3934, 38eqtr2d 2657 . . . . . . . . . . . . . . 15  |-  ( ( a  =  b  /\  b  =  B )  ->  { B }  =  { a ,  b } )
4039ex 450 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
b  =  B  ->  { B }  =  {
a ,  b } ) )
4140spimev 2259 . . . . . . . . . . . . 13  |-  ( b  =  B  ->  E. a { B }  =  {
a ,  b } )
4241adantl 482 . . . . . . . . . . . 12  |-  ( ( -.  A  e.  _V  /\  b  =  B )  ->  E. a { B }  =  { a ,  b } )
43 prprc1 4300 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  { A ,  B }  =  { B } )
4443adantr 481 . . . . . . . . . . . . . 14  |-  ( ( -.  A  e.  _V  /\  b  =  B )  ->  { A ,  B }  =  { B } )
4544eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( ( -.  A  e.  _V  /\  b  =  B )  ->  ( { A ,  B }  =  {
a ,  b }  <->  { B }  =  {
a ,  b } ) )
4645exbidv 1850 . . . . . . . . . . . 12  |-  ( ( -.  A  e.  _V  /\  b  =  B )  ->  ( E. a { A ,  B }  =  { a ,  b }  <->  E. a { B }  =  { a ,  b } ) )
4742, 46mpbird 247 . . . . . . . . . . 11  |-  ( ( -.  A  e.  _V  /\  b  =  B )  ->  E. a { A ,  B }  =  {
a ,  b } )
4847ex 450 . . . . . . . . . 10  |-  ( -.  A  e.  _V  ->  ( b  =  B  ->  E. a { A ,  B }  =  {
a ,  b } ) )
4948eximdv 1846 . . . . . . . . 9  |-  ( -.  A  e.  _V  ->  ( E. b  b  =  B  ->  E. b E. a { A ,  B }  =  {
a ,  b } ) )
5049impcom 446 . . . . . . . 8  |-  ( ( E. b  b  =  B  /\  -.  A  e.  _V )  ->  E. b E. a { A ,  B }  =  {
a ,  b } )
51 excom 2042 . . . . . . . 8  |-  ( E. a E. b { A ,  B }  =  { a ,  b }  <->  E. b E. a { A ,  B }  =  { a ,  b } )
5250, 51sylibr 224 . . . . . . 7  |-  ( ( E. b  b  =  B  /\  -.  A  e.  _V )  ->  E. a E. b { A ,  B }  =  {
a ,  b } )
5352ex 450 . . . . . 6  |-  ( E. b  b  =  B  ->  ( -.  A  e.  _V  ->  E. a E. b { A ,  B }  =  {
a ,  b } ) )
5453, 5syl11 33 . . . . 5  |-  ( -.  A  e.  _V  ->  ( B  e.  _V  ->  E. a E. b { A ,  B }  =  { a ,  b } ) )
5532, 54pm2.61i 176 . . . 4  |-  ( B  e.  _V  ->  E. a E. b { A ,  B }  =  {
a ,  b } )
5631, 55jaoi 394 . . 3  |-  ( ( A  e.  _V  \/  B  e.  _V )  ->  E. a E. b { A ,  B }  =  { a ,  b } )
573, 56syl 17 . 2  |-  ( ( A  e.  V  \/  B  e.  W )  ->  E. a E. b { A ,  B }  =  { a ,  b } )
58 prex 4909 . . 3  |-  { A ,  B }  e.  _V
59 eqeq1 2626 . . . 4  |-  ( p  =  { A ,  B }  ->  ( p  =  { a ,  b }  <->  { A ,  B }  =  {
a ,  b } ) )
60592exbidv 1852 . . 3  |-  ( p  =  { A ,  B }  ->  ( E. a E. b  p  =  { a ,  b }  <->  E. a E. b { A ,  B }  =  {
a ,  b } ) )
6158, 60elab 3350 . 2  |-  ( { A ,  B }  e.  { p  |  E. a E. b  p  =  { a ,  b } }  <->  E. a E. b { A ,  B }  =  {
a ,  b } )
6257, 61sylibr 224 1  |-  ( ( A  e.  V  \/  B  e.  W )  ->  { A ,  B }  e.  { p  |  E. a E. b  p  =  { a ,  b } }
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   _Vcvv 3200   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator