| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prex | Structured version Visualization version Unicode version | ||
| Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 4302), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| prex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 4269 |
. . . . . 6
| |
| 2 | 1 | eleq1d 2686 |
. . . . 5
|
| 3 | zfpair2 4907 |
. . . . 5
| |
| 4 | 2, 3 | vtoclg 3266 |
. . . 4
|
| 5 | preq1 4268 |
. . . . 5
| |
| 6 | 5 | eleq1d 2686 |
. . . 4
|
| 7 | 4, 6 | syl5ib 234 |
. . 3
|
| 8 | 7 | vtocleg 3279 |
. 2
|
| 9 | prprc1 4300 |
. . 3
| |
| 10 | snex 4908 |
. . 3
| |
| 11 | 9, 10 | syl6eqel 2709 |
. 2
|
| 12 | prprc2 4301 |
. . 3
| |
| 13 | snex 4908 |
. . 3
| |
| 14 | 12, 13 | syl6eqel 2709 |
. 2
|
| 15 | 8, 11, 14 | pm2.61nii 178 |
1
|
| Copyright terms: Public domain | W3C validator |