Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwpwuni Structured version   Visualization version   Unicode version

Theorem pwpwuni 39225
Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwpwuni  |-  ( A  e.  V  ->  ( A  e.  ~P ~P B 
<-> 
U. A  e.  ~P B ) )

Proof of Theorem pwpwuni
StepHypRef Expression
1 elpwg 4166 . 2  |-  ( A  e.  V  ->  ( A  e.  ~P ~P B 
<->  A  C_  ~P B
) )
2 sspwuni 4611 . . 3  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
32a1i 11 . 2  |-  ( A  e.  V  ->  ( A  C_  ~P B  <->  U. A  C_  B ) )
4 uniexg 6955 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
5 elpwg 4166 . . . 4  |-  ( U. A  e.  _V  ->  ( U. A  e.  ~P B 
<-> 
U. A  C_  B
) )
64, 5syl 17 . . 3  |-  ( A  e.  V  ->  ( U. A  e.  ~P B 
<-> 
U. A  C_  B
) )
76bicomd 213 . 2  |-  ( A  e.  V  ->  ( U. A  C_  B  <->  U. A  e. 
~P B ) )
81, 3, 73bitrd 294 1  |-  ( A  e.  V  ->  ( A  e.  ~P ~P B 
<-> 
U. A  e.  ~P B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  psmeasurelem  40687
  Copyright terms: Public domain W3C validator