Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwpwuni Structured version   Visualization version   GIF version

Theorem pwpwuni 39225
Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwpwuni (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))

Proof of Theorem pwpwuni
StepHypRef Expression
1 elpwg 4166 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵𝐴 ⊆ 𝒫 𝐵))
2 sspwuni 4611 . . 3 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
32a1i 11 . 2 (𝐴𝑉 → (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵))
4 uniexg 6955 . . . 4 (𝐴𝑉 𝐴 ∈ V)
5 elpwg 4166 . . . 4 ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
64, 5syl 17 . . 3 (𝐴𝑉 → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
76bicomd 213 . 2 (𝐴𝑉 → ( 𝐴𝐵 𝐴 ∈ 𝒫 𝐵))
81, 3, 73bitrd 294 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1990  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  psmeasurelem  40687
  Copyright terms: Public domain W3C validator