MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdass Structured version   Visualization version   Unicode version

Theorem qdass 4288
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdass  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B ,  C }  u.  { D } )

Proof of Theorem qdass
StepHypRef Expression
1 unass 3770 . 2  |-  ( ( { A ,  B }  u.  { C } )  u.  { D } )  =  ( { A ,  B }  u.  ( { C }  u.  { D } ) )
2 df-tp 4182 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
32uneq1i 3763 . 2  |-  ( { A ,  B ,  C }  u.  { D } )  =  ( ( { A ,  B }  u.  { C } )  u.  { D } )
4 df-pr 4180 . . 3  |-  { C ,  D }  =  ( { C }  u.  { D } )
54uneq2i 3764 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B }  u.  ( { C }  u.  { D } ) )
61, 3, 53eqtr4ri 2655 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B ,  C }  u.  { D } )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    u. cun 3572   {csn 4177   {cpr 4179   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-pr 4180  df-tp 4182
This theorem is referenced by:  cnlmodlem1  22936  cnlmodlem2  22937  cnlmodlem3  22938  cnlmod4  22939  cnstrcvs  22941  ex-pw  27286
  Copyright terms: Public domain W3C validator