Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj580 Structured version   Visualization version   Unicode version

Theorem bnj580 30983
Description: Technical lemma for bnj579 30984. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj580.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj580.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj580.3  |-  ( ch  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj580.4  |-  ( ph'  <->  [. g  /  f ]. ph )
bnj580.5  |-  ( ps'  <->  [. g  /  f ]. ps )
bnj580.6  |-  ( ch'  <->  [. g  /  f ]. ch )
bnj580.7  |-  D  =  ( om  \  { (/)
} )
bnj580.8  |-  ( th  <->  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) ) )
bnj580.9  |-  ( ta  <->  A. k  e.  n  ( k  _E  j  ->  [. k  /  j ]. th ) )
Assertion
Ref Expression
bnj580  |-  ( n  e.  D  ->  E* f ch )
Distinct variable groups:    A, f,
i, k    D, f,
g, j, k    R, f, i, k    ch, g,
j, k    j, ch', k    f, n    g, i, n, k   
x, f    y, f,
g, i, k    j, n    th, k
Allowed substitution hints:    ph( x, y, f, g, i, j, k, n)    ps( x, y, f, g, i, j, k, n)    ch( x, y, f, i, n)    th( x, y, f, g, i, j, n)    ta( x, y, f, g, i, j, k, n)    A( x, y, g, j, n)    D( x, y, i, n)    R( x, y, g, j, n)    ph'( x, y, f, g, i, j, k, n)    ps'( x, y, f, g, i, j, k, n)    ch'( x, y, f, g, i, n)

Proof of Theorem bnj580
StepHypRef Expression
1 bnj580.3 . . . . . . 7  |-  ( ch  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
21simp1bi 1076 . . . . . 6  |-  ( ch 
->  f  Fn  n
)
3 bnj580.4 . . . . . . . 8  |-  ( ph'  <->  [. g  /  f ]. ph )
4 bnj580.5 . . . . . . . 8  |-  ( ps'  <->  [. g  /  f ]. ps )
5 bnj580.6 . . . . . . . 8  |-  ( ch'  <->  [. g  /  f ]. ch )
61, 3, 4, 5bnj581 30978 . . . . . . 7  |-  ( ch'  <->  (
g  Fn  n  /\  ph' 
/\  ps' ) )
76simp1bi 1076 . . . . . 6  |-  ( ch'  ->  g  Fn  n )
82, 7bnj240 30765 . . . . 5  |-  ( ( n  e.  D  /\  ch  /\  ch' )  ->  (
f  Fn  n  /\  g  Fn  n )
)
9 bnj580.1 . . . . . . . . . . . . 13  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
10 bnj580.2 . . . . . . . . . . . . 13  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
11 bnj580.7 . . . . . . . . . . . . 13  |-  D  =  ( om  \  { (/)
} )
123, 9bnj154 30948 . . . . . . . . . . . . 13  |-  ( ph'  <->  (
g `  (/) )  = 
pred ( x ,  A ,  R ) )
13 vex 3203 . . . . . . . . . . . . . 14  |-  g  e. 
_V
1410, 4, 13bnj540 30962 . . . . . . . . . . . . 13  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )
15 bnj580.8 . . . . . . . . . . . . 13  |-  ( th  <->  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) ) )
1615bnj591 30981 . . . . . . . . . . . . 13  |-  ( [. k  /  j ]. th  <->  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  k
)  =  ( g `
 k ) ) )
17 bnj580.9 . . . . . . . . . . . . 13  |-  ( ta  <->  A. k  e.  n  ( k  _E  j  ->  [. k  /  j ]. th ) )
189, 10, 1, 11, 12, 14, 6, 15, 16, 17bnj594 30982 . . . . . . . . . . . 12  |-  ( ( j  e.  n  /\  ta )  ->  th )
1918ex 450 . . . . . . . . . . 11  |-  ( j  e.  n  ->  ( ta  ->  th ) )
2019rgen 2922 . . . . . . . . . 10  |-  A. j  e.  n  ( ta  ->  th )
21 vex 3203 . . . . . . . . . . 11  |-  n  e. 
_V
2221, 17bnj110 30928 . . . . . . . . . 10  |-  ( (  _E  Fr  n  /\  A. j  e.  n  ( ta  ->  th )
)  ->  A. j  e.  n  th )
2320, 22mpan2 707 . . . . . . . . 9  |-  (  _E  Fr  n  ->  A. j  e.  n  th )
2415ralbii 2980 . . . . . . . . 9  |-  ( A. j  e.  n  th  <->  A. j  e.  n  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) ) )
2523, 24sylib 208 . . . . . . . 8  |-  (  _E  Fr  n  ->  A. j  e.  n  ( (
n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) ) )
2625r19.21be 2933 . . . . . . 7  |-  A. j  e.  n  (  _E  Fr  n  ->  ( ( n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) ) )
2711bnj923 30838 . . . . . . . . . . . . 13  |-  ( n  e.  D  ->  n  e.  om )
28 nnord 7073 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  Ord  n )
29 ordfr 5738 . . . . . . . . . . . . 13  |-  ( Ord  n  ->  _E  Fr  n )
3027, 28, 293syl 18 . . . . . . . . . . . 12  |-  ( n  e.  D  ->  _E  Fr  n )
31303ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( n  e.  D  /\  ch  /\  ch' )  ->  _E  Fr  n )
3231pm4.71ri 665 . . . . . . . . . 10  |-  ( ( n  e.  D  /\  ch  /\  ch' )  <->  (  _E  Fr  n  /\  (
n  e.  D  /\  ch  /\  ch' ) ) )
3332imbi1i 339 . . . . . . . . 9  |-  ( ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) )  <-> 
( (  _E  Fr  n  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  (
f `  j )  =  ( g `  j ) ) )
34 impexp 462 . . . . . . . . 9  |-  ( ( (  _E  Fr  n  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  ( f `  j )  =  ( g `  j ) )  <->  (  _E  Fr  n  ->  ( ( n  e.  D  /\  ch  /\  ch' )  ->  ( f `
 j )  =  ( g `  j
) ) ) )
3533, 34bitri 264 . . . . . . . 8  |-  ( ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) )  <-> 
(  _E  Fr  n  ->  ( ( n  e.  D  /\  ch  /\  ch' )  ->  ( f `  j )  =  ( g `  j ) ) ) )
3635ralbii 2980 . . . . . . 7  |-  ( A. j  e.  n  (
( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) )  <->  A. j  e.  n  (  _E  Fr  n  ->  ( ( n  e.  D  /\  ch  /\  ch' )  ->  ( f `  j )  =  ( g `  j ) ) ) )
3726, 36mpbir 221 . . . . . 6  |-  A. j  e.  n  ( (
n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) )
38 r19.21v 2960 . . . . . 6  |-  ( A. j  e.  n  (
( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) )  <-> 
( ( n  e.  D  /\  ch  /\  ch' )  ->  A. j  e.  n  ( f `  j )  =  ( g `  j ) ) )
3937, 38mpbi 220 . . . . 5  |-  ( ( n  e.  D  /\  ch  /\  ch' )  ->  A. j  e.  n  ( f `  j )  =  ( g `  j ) )
40 eqfnfv 6311 . . . . . 6  |-  ( ( f  Fn  n  /\  g  Fn  n )  ->  ( f  =  g  <->  A. j  e.  n  ( f `  j
)  =  ( g `
 j ) ) )
4140biimprd 238 . . . . 5  |-  ( ( f  Fn  n  /\  g  Fn  n )  ->  ( A. j  e.  n  ( f `  j )  =  ( g `  j )  ->  f  =  g ) )
428, 39, 41sylc 65 . . . 4  |-  ( ( n  e.  D  /\  ch  /\  ch' )  ->  f  =  g )
43423expib 1268 . . 3  |-  ( n  e.  D  ->  (
( ch  /\  ch' )  -> 
f  =  g ) )
4443alrimivv 1856 . 2  |-  ( n  e.  D  ->  A. f A. g ( ( ch 
/\  ch' )  ->  f  =  g ) )
45 sbsbc 3439 . . . . . 6  |-  ( [ g  /  f ] ch  <->  [. g  /  f ]. ch )
4645anbi2i 730 . . . . 5  |-  ( ( ch  /\  [ g  /  f ] ch ) 
<->  ( ch  /\  [. g  /  f ]. ch ) )
4746imbi1i 339 . . . 4  |-  ( ( ( ch  /\  [
g  /  f ] ch )  ->  f  =  g )  <->  ( ( ch  /\  [. g  / 
f ]. ch )  -> 
f  =  g ) )
48472albii 1748 . . 3  |-  ( A. f A. g ( ( ch  /\  [ g  /  f ] ch )  ->  f  =  g )  <->  A. f A. g
( ( ch  /\  [. g  /  f ]. ch )  ->  f  =  g ) )
49 nfv 1843 . . . 4  |-  F/ g ch
5049mo3 2507 . . 3  |-  ( E* f ch  <->  A. f A. g ( ( ch 
/\  [ g  / 
f ] ch )  ->  f  =  g ) )
515anbi2i 730 . . . . 5  |-  ( ( ch  /\  ch' )  <->  ( ch  /\ 
[. g  /  f ]. ch ) )
5251imbi1i 339 . . . 4  |-  ( ( ( ch  /\  ch' )  -> 
f  =  g )  <-> 
( ( ch  /\  [. g  /  f ]. ch )  ->  f  =  g ) )
53522albii 1748 . . 3  |-  ( A. f A. g ( ( ch  /\  ch' )  -> 
f  =  g )  <->  A. f A. g ( ( ch  /\  [. g  /  f ]. ch )  ->  f  =  g ) )
5448, 50, 533bitr4i 292 . 2  |-  ( E* f ch  <->  A. f A. g ( ( ch 
/\  ch' )  ->  f  =  g ) )
5544, 54sylibr 224 1  |-  ( n  e.  D  ->  E* f ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   [wsb 1880    e. wcel 1990   E*wmo 2471   A.wral 2912   [.wsbc 3435    \ cdif 3571   (/)c0 3915   {csn 4177   U_ciun 4520   class class class wbr 4653    _E cep 5028    Fr wfr 5070   Ord word 5722   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-om 7066  df-bnj17 30753
This theorem is referenced by:  bnj579  30984
  Copyright terms: Public domain W3C validator