| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj580 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj579 30984. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj580.1 |
|
| bnj580.2 |
|
| bnj580.3 |
|
| bnj580.4 |
|
| bnj580.5 |
|
| bnj580.6 |
|
| bnj580.7 |
|
| bnj580.8 |
|
| bnj580.9 |
|
| Ref | Expression |
|---|---|
| bnj580 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj580.3 |
. . . . . . 7
| |
| 2 | 1 | simp1bi 1076 |
. . . . . 6
|
| 3 | bnj580.4 |
. . . . . . . 8
| |
| 4 | bnj580.5 |
. . . . . . . 8
| |
| 5 | bnj580.6 |
. . . . . . . 8
| |
| 6 | 1, 3, 4, 5 | bnj581 30978 |
. . . . . . 7
|
| 7 | 6 | simp1bi 1076 |
. . . . . 6
|
| 8 | 2, 7 | bnj240 30765 |
. . . . 5
|
| 9 | bnj580.1 |
. . . . . . . . . . . . 13
| |
| 10 | bnj580.2 |
. . . . . . . . . . . . 13
| |
| 11 | bnj580.7 |
. . . . . . . . . . . . 13
| |
| 12 | 3, 9 | bnj154 30948 |
. . . . . . . . . . . . 13
|
| 13 | vex 3203 |
. . . . . . . . . . . . . 14
| |
| 14 | 10, 4, 13 | bnj540 30962 |
. . . . . . . . . . . . 13
|
| 15 | bnj580.8 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | bnj591 30981 |
. . . . . . . . . . . . 13
|
| 17 | bnj580.9 |
. . . . . . . . . . . . 13
| |
| 18 | 9, 10, 1, 11, 12, 14, 6, 15, 16, 17 | bnj594 30982 |
. . . . . . . . . . . 12
|
| 19 | 18 | ex 450 |
. . . . . . . . . . 11
|
| 20 | 19 | rgen 2922 |
. . . . . . . . . 10
|
| 21 | vex 3203 |
. . . . . . . . . . 11
| |
| 22 | 21, 17 | bnj110 30928 |
. . . . . . . . . 10
|
| 23 | 20, 22 | mpan2 707 |
. . . . . . . . 9
|
| 24 | 15 | ralbii 2980 |
. . . . . . . . 9
|
| 25 | 23, 24 | sylib 208 |
. . . . . . . 8
|
| 26 | 25 | r19.21be 2933 |
. . . . . . 7
|
| 27 | 11 | bnj923 30838 |
. . . . . . . . . . . . 13
|
| 28 | nnord 7073 |
. . . . . . . . . . . . 13
| |
| 29 | ordfr 5738 |
. . . . . . . . . . . . 13
| |
| 30 | 27, 28, 29 | 3syl 18 |
. . . . . . . . . . . 12
|
| 31 | 30 | 3ad2ant1 1082 |
. . . . . . . . . . 11
|
| 32 | 31 | pm4.71ri 665 |
. . . . . . . . . 10
|
| 33 | 32 | imbi1i 339 |
. . . . . . . . 9
|
| 34 | impexp 462 |
. . . . . . . . 9
| |
| 35 | 33, 34 | bitri 264 |
. . . . . . . 8
|
| 36 | 35 | ralbii 2980 |
. . . . . . 7
|
| 37 | 26, 36 | mpbir 221 |
. . . . . 6
|
| 38 | r19.21v 2960 |
. . . . . 6
| |
| 39 | 37, 38 | mpbi 220 |
. . . . 5
|
| 40 | eqfnfv 6311 |
. . . . . 6
| |
| 41 | 40 | biimprd 238 |
. . . . 5
|
| 42 | 8, 39, 41 | sylc 65 |
. . . 4
|
| 43 | 42 | 3expib 1268 |
. . 3
|
| 44 | 43 | alrimivv 1856 |
. 2
|
| 45 | sbsbc 3439 |
. . . . . 6
| |
| 46 | 45 | anbi2i 730 |
. . . . 5
|
| 47 | 46 | imbi1i 339 |
. . . 4
|
| 48 | 47 | 2albii 1748 |
. . 3
|
| 49 | nfv 1843 |
. . . 4
| |
| 50 | 49 | mo3 2507 |
. . 3
|
| 51 | 5 | anbi2i 730 |
. . . . 5
|
| 52 | 51 | imbi1i 339 |
. . . 4
|
| 53 | 52 | 2albii 1748 |
. . 3
|
| 54 | 48, 50, 53 | 3bitr4i 292 |
. 2
|
| 55 | 44, 54 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-om 7066 df-bnj17 30753 |
| This theorem is referenced by: bnj579 30984 |
| Copyright terms: Public domain | W3C validator |