| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.30 | Structured version Visualization version Unicode version | ||
| Description: Restricted quantifier version of 19.30 1809. (Contributed by Scott Fenton, 25-Feb-2011.) |
| Ref | Expression |
|---|---|
| r19.30 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralim 2948 |
. 2
| |
| 2 | orcom 402 |
. . . 4
| |
| 3 | df-or 385 |
. . . 4
| |
| 4 | 2, 3 | bitri 264 |
. . 3
|
| 5 | 4 | ralbii 2980 |
. 2
|
| 6 | orcom 402 |
. . 3
| |
| 7 | dfrex2 2996 |
. . . 4
| |
| 8 | 7 | orbi2i 541 |
. . 3
|
| 9 | imor 428 |
. . 3
| |
| 10 | 6, 8, 9 | 3bitr4i 292 |
. 2
|
| 11 | 1, 5, 10 | 3imtr4i 281 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: disjunsn 29407 esumcvg 30148 |
| Copyright terms: Public domain | W3C validator |