| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjunsn | Structured version Visualization version Unicode version | ||
| Description: Append an element to a disjoint collection. Similar to ralunsn 4422, gsumunsn 18359, etc. (Contributed by Thierry Arnoux, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| disjunsn.s |
|
| Ref | Expression |
|---|---|
| disjunsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjors 4635 |
. . . . . 6
| |
| 2 | eqeq1 2626 |
. . . . . . . . 9
| |
| 3 | csbeq1 3536 |
. . . . . . . . . . 11
| |
| 4 | 3 | ineq1d 3813 |
. . . . . . . . . 10
|
| 5 | 4 | eqeq1d 2624 |
. . . . . . . . 9
|
| 6 | 2, 5 | orbi12d 746 |
. . . . . . . 8
|
| 7 | 6 | ralbidv 2986 |
. . . . . . 7
|
| 8 | 7 | ralunsn 4422 |
. . . . . 6
|
| 9 | 1, 8 | syl5bb 272 |
. . . . 5
|
| 10 | eqeq2 2633 |
. . . . . . . . 9
| |
| 11 | csbeq1 3536 |
. . . . . . . . . . 11
| |
| 12 | 11 | ineq2d 3814 |
. . . . . . . . . 10
|
| 13 | 12 | eqeq1d 2624 |
. . . . . . . . 9
|
| 14 | 10, 13 | orbi12d 746 |
. . . . . . . 8
|
| 15 | 14 | ralunsn 4422 |
. . . . . . 7
|
| 16 | 15 | ralbidv 2986 |
. . . . . 6
|
| 17 | eqeq2 2633 |
. . . . . . . . 9
| |
| 18 | 11 | ineq2d 3814 |
. . . . . . . . . 10
|
| 19 | 18 | eqeq1d 2624 |
. . . . . . . . 9
|
| 20 | 17, 19 | orbi12d 746 |
. . . . . . . 8
|
| 21 | 20 | ralunsn 4422 |
. . . . . . 7
|
| 22 | eqid 2622 |
. . . . . . . . 9
| |
| 23 | 22 | orci 405 |
. . . . . . . 8
|
| 24 | 23 | biantru 526 |
. . . . . . 7
|
| 25 | 21, 24 | syl6bbr 278 |
. . . . . 6
|
| 26 | 16, 25 | anbi12d 747 |
. . . . 5
|
| 27 | 9, 26 | bitrd 268 |
. . . 4
|
| 28 | r19.26 3064 |
. . . . . 6
| |
| 29 | disjors 4635 |
. . . . . . 7
| |
| 30 | 29 | anbi1i 731 |
. . . . . 6
|
| 31 | 28, 30 | bitr4i 267 |
. . . . 5
|
| 32 | 31 | anbi1i 731 |
. . . 4
|
| 33 | 27, 32 | syl6bb 276 |
. . 3
|
| 34 | 33 | adantr 481 |
. 2
|
| 35 | orcom 402 |
. . . . . . . . 9
| |
| 36 | 35 | ralbii 2980 |
. . . . . . . 8
|
| 37 | r19.30 3082 |
. . . . . . . . 9
| |
| 38 | risset 3062 |
. . . . . . . . . . . 12
| |
| 39 | biorf 420 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | sylnbi 320 |
. . . . . . . . . . 11
|
| 41 | 40 | adantl 482 |
. . . . . . . . . 10
|
| 42 | orcom 402 |
. . . . . . . . . 10
| |
| 43 | 41, 42 | syl6bb 276 |
. . . . . . . . 9
|
| 44 | 37, 43 | syl5ibr 236 |
. . . . . . . 8
|
| 45 | 36, 44 | syl5bir 233 |
. . . . . . 7
|
| 46 | olc 399 |
. . . . . . . 8
| |
| 47 | 46 | ralimi 2952 |
. . . . . . 7
|
| 48 | 45, 47 | impbid1 215 |
. . . . . 6
|
| 49 | nfv 1843 |
. . . . . . . . . 10
| |
| 50 | nfcsb1v 3549 |
. . . . . . . . . . . 12
| |
| 51 | nfcv 2764 |
. . . . . . . . . . . 12
| |
| 52 | 50, 51 | nfin 3820 |
. . . . . . . . . . 11
|
| 53 | 52 | nfeq1 2778 |
. . . . . . . . . 10
|
| 54 | csbeq1a 3542 |
. . . . . . . . . . . 12
| |
| 55 | 54 | ineq1d 3813 |
. . . . . . . . . . 11
|
| 56 | 55 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 57 | 49, 53, 56 | cbvral 3167 |
. . . . . . . . 9
|
| 58 | 57 | a1i 11 |
. . . . . . . 8
|
| 59 | ss0b 3973 |
. . . . . . . . . . 11
| |
| 60 | iunss 4561 |
. . . . . . . . . . 11
| |
| 61 | iunin1 4585 |
. . . . . . . . . . . 12
| |
| 62 | 61 | eqeq1i 2627 |
. . . . . . . . . . 11
|
| 63 | 59, 60, 62 | 3bitr3ri 291 |
. . . . . . . . . 10
|
| 64 | ss0b 3973 |
. . . . . . . . . . 11
| |
| 65 | 64 | ralbii 2980 |
. . . . . . . . . 10
|
| 66 | 63, 65 | bitri 264 |
. . . . . . . . 9
|
| 67 | 66 | a1i 11 |
. . . . . . . 8
|
| 68 | nfcvd 2765 |
. . . . . . . . . . . 12
| |
| 69 | disjunsn.s |
. . . . . . . . . . . 12
| |
| 70 | 68, 69 | csbiegf 3557 |
. . . . . . . . . . 11
|
| 71 | 70 | ineq2d 3814 |
. . . . . . . . . 10
|
| 72 | 71 | eqeq1d 2624 |
. . . . . . . . 9
|
| 73 | 72 | ralbidv 2986 |
. . . . . . . 8
|
| 74 | 58, 67, 73 | 3bitr4d 300 |
. . . . . . 7
|
| 75 | 74 | adantr 481 |
. . . . . 6
|
| 76 | 48, 75 | bitr4d 271 |
. . . . 5
|
| 77 | 76 | anbi2d 740 |
. . . 4
|
| 78 | orcom 402 |
. . . . . . . 8
| |
| 79 | 78 | ralbii 2980 |
. . . . . . 7
|
| 80 | r19.30 3082 |
. . . . . . . 8
| |
| 81 | clel5 3343 |
. . . . . . . . . . 11
| |
| 82 | biorf 420 |
. . . . . . . . . . 11
| |
| 83 | 81, 82 | sylnbi 320 |
. . . . . . . . . 10
|
| 84 | 83 | adantl 482 |
. . . . . . . . 9
|
| 85 | orcom 402 |
. . . . . . . . 9
| |
| 86 | 84, 85 | syl6bb 276 |
. . . . . . . 8
|
| 87 | 80, 86 | syl5ibr 236 |
. . . . . . 7
|
| 88 | 79, 87 | syl5bir 233 |
. . . . . 6
|
| 89 | olc 399 |
. . . . . . 7
| |
| 90 | 89 | ralimi 2952 |
. . . . . 6
|
| 91 | 88, 90 | impbid1 215 |
. . . . 5
|
| 92 | nfv 1843 |
. . . . . . . . . 10
| |
| 93 | nfcsb1v 3549 |
. . . . . . . . . . . 12
| |
| 94 | 93, 51 | nfin 3820 |
. . . . . . . . . . 11
|
| 95 | 94 | nfeq1 2778 |
. . . . . . . . . 10
|
| 96 | csbeq1a 3542 |
. . . . . . . . . . . 12
| |
| 97 | 96 | ineq1d 3813 |
. . . . . . . . . . 11
|
| 98 | 97 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 99 | 92, 95, 98 | cbvral 3167 |
. . . . . . . . 9
|
| 100 | 99 | a1i 11 |
. . . . . . . 8
|
| 101 | incom 3805 |
. . . . . . . . . 10
| |
| 102 | 101 | eqeq1i 2627 |
. . . . . . . . 9
|
| 103 | 102 | ralbii 2980 |
. . . . . . . 8
|
| 104 | 100, 103 | syl6bb 276 |
. . . . . . 7
|
| 105 | 70 | ineq1d 3813 |
. . . . . . . . 9
|
| 106 | 105 | eqeq1d 2624 |
. . . . . . . 8
|
| 107 | 106 | ralbidv 2986 |
. . . . . . 7
|
| 108 | 104, 67, 107 | 3bitr4d 300 |
. . . . . 6
|
| 109 | 108 | adantr 481 |
. . . . 5
|
| 110 | 91, 109 | bitr4d 271 |
. . . 4
|
| 111 | 77, 110 | anbi12d 747 |
. . 3
|
| 112 | anass 681 |
. . . 4
| |
| 113 | anidm 676 |
. . . . 5
| |
| 114 | 113 | anbi2i 730 |
. . . 4
|
| 115 | 112, 114 | bitri 264 |
. . 3
|
| 116 | 111, 115 | syl6bb 276 |
. 2
|
| 117 | 34, 116 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-iun 4522 df-disj 4621 |
| This theorem is referenced by: disjun0 29408 disjiunel 29409 |
| Copyright terms: Public domain | W3C validator |