Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvg Structured version   Visualization version   Unicode version

Theorem esumcvg 30148
Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 14458. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Hypotheses
Ref Expression
esumcvg.j  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
esumcvg.f  |-  F  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )
esumcvg.a  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
esumcvg.m  |-  ( k  =  m  ->  A  =  B )
Assertion
Ref Expression
esumcvg  |-  ( ph  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
Distinct variable groups:    m, n, A    k, n, B    k, m, F, n    k, J, n    ph, k, m, n
Allowed substitution hints:    A( k)    B( m)    J( m)

Proof of Theorem esumcvg
Dummy variables  l  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  1  e.  ZZ )
3 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F  e.  dom  ~~>  )
4 rge0ssre 12280 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  RR
5 ax-resscn 9993 . . . . . . . . 9  |-  RR  C_  CC
64, 5sstri 3612 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  CC
7 esumcvg.m . . . . . . . . . . . . 13  |-  ( k  =  m  ->  A  =  B )
87eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  m  ->  ( A  e.  ( 0 [,) +oo )  <->  B  e.  ( 0 [,) +oo ) ) )
98cbvralv 3171 . . . . . . . . . . 11  |-  ( A. k  e.  NN  A  e.  ( 0 [,) +oo ) 
<-> 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )
10 rsp 2929 . . . . . . . . . . 11  |-  ( A. k  e.  NN  A  e.  ( 0 [,) +oo )  ->  ( k  e.  NN  ->  A  e.  ( 0 [,) +oo ) ) )
119, 10sylbir 225 . . . . . . . . . 10  |-  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  ->  ( k  e.  NN  ->  A  e.  ( 0 [,) +oo ) ) )
1211adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  ( k  e.  NN  ->  A  e.  ( 0 [,) +oo ) ) )
1312imp 445 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  NN )  ->  A  e.  ( 0 [,) +oo ) )
146, 13sseldi 3601 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  NN )  ->  A  e.  CC )
1514adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  A  e.  CC )
16 esumcvg.f . . . . . . . . 9  |-  F  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )
17 fzfid 12772 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  (
1 ... n )  e. 
Fin )
18 elfznn 12370 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... n )  ->  k  e.  NN )
1918, 13sylan2 491 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,) +oo ) )
2019adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,) +oo ) )
2117, 20esumpfinval 30137 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  =  sum_ k  e.  ( 1 ... n
) A )
2221mpteq2dva 4744 . . . . . . . . 9  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  =  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n
) A ) )
2316, 22syl5eq 2668 . . . . . . . 8  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F  =  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A ) )
246, 20sseldi 3601 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  CC )
2517, 24fsumcl 14464 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  sum_ k  e.  ( 1 ... n
) A  e.  CC )
2623, 25fvmpt2d 6293 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  ( F `  n )  =  sum_ k  e.  ( 1 ... n ) A )
2726adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  n )  =  sum_ k  e.  ( 1 ... n ) A )
281, 2, 3, 15, 27isumclim3 14490 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F  ~~>  sum_ k  e.  NN  A
)
29 esumcvg.j . . . . . 6  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
3017, 20fsumrp0cl 29695 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  sum_ k  e.  ( 1 ... n
) A  e.  ( 0 [,) +oo )
)
3121, 30eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  e.  ( 0 [,) +oo ) )
3231, 16fmptd 6385 . . . . . . 7  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F : NN
--> ( 0 [,) +oo ) )
3332adantr 481 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F : NN --> ( 0 [,) +oo ) )
34 simplll 798 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  ph )
35 eqidd 2623 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( m  e.  NN  |->  B )  =  ( m  e.  NN  |->  B ) )
36 eqcom 2629 . . . . . . . . . . . 12  |-  ( k  =  m  <->  m  =  k )
37 eqcom 2629 . . . . . . . . . . . 12  |-  ( A  =  B  <->  B  =  A )
387, 36, 373imtr3i 280 . . . . . . . . . . 11  |-  ( m  =  k  ->  B  =  A )
3938adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  =  k )  ->  B  =  A )
40 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
41 esumcvg.a . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
4235, 39, 40, 41fvmptd 6288 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( m  e.  NN  |->  B ) `  k )  =  A )
4334, 42sylancom 701 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  (
( m  e.  NN  |->  B ) `  k
)  =  A )
4413adantlr 751 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  A  e.  ( 0 [,) +oo ) )
45 elrege0 12278 . . . . . . . . . 10  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
4644, 45sylib 208 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  ( A  e.  RR  /\  0  <_  A ) )
4746simpld 475 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  A  e.  RR )
48 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( 1 ... n )  e. 
_V
49 simpll 790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  ph )
5018adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  k  e.  NN )
5149, 50, 41syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,] +oo ) )
5251ralrimiva 2966 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( 1 ... n
) A  e.  ( 0 [,] +oo )
)
53 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ k
( 1 ... n
)
5453esumcl 30092 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... n
)  e.  _V  /\  A. k  e.  ( 1 ... n ) A  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  ( 1 ... n ) A  e.  ( 0 [,] +oo ) )
5548, 52, 54sylancr 695 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  e.  ( 0 [,] +oo ) )
5655, 16fmptd 6385 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> ( 0 [,] +oo ) )
57 ffn 6045 . . . . . . . . . . . . 13  |-  ( F : NN --> ( 0 [,] +oo )  ->  F  Fn  NN )
5856, 57syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  NN )
5958adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F  Fn  NN )
60 1z 11407 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
61 seqfn 12813 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( m  e.  NN  |->  B ) )  Fn  ( ZZ>= `  1 )
)
6260, 61ax-mp 5 . . . . . . . . . . . . 13  |-  seq 1
(  +  ,  ( m  e.  NN  |->  B ) )  Fn  ( ZZ>=
`  1 )
631fneq2i 5986 . . . . . . . . . . . . 13  |-  (  seq 1 (  +  , 
( m  e.  NN  |->  B ) )  Fn  NN  <->  seq 1 (  +  ,  ( m  e.  NN  |->  B ) )  Fn  ( ZZ>= `  1
) )
6462, 63mpbir 221 . . . . . . . . . . . 12  |-  seq 1
(  +  ,  ( m  e.  NN  |->  B ) )  Fn  NN
6564a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  seq 1
(  +  ,  ( m  e.  NN  |->  B ) )  Fn  NN )
66 simplll 798 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  ph )
6718, 42sylan2 491 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... n
) )  ->  (
( m  e.  NN  |->  B ) `  k
)  =  A )
6866, 67sylancom 701 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  /\  k  e.  ( 1 ... n
) )  ->  (
( m  e.  NN  |->  B ) `  k
)  =  A )
69 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  n  e.  NN )
7069, 1syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
7168, 70, 24fsumser 14461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  sum_ k  e.  ( 1 ... n
) A  =  (  seq 1 (  +  ,  ( m  e.  NN  |->  B ) ) `
 n ) )
7226, 71eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  ( F `  n )  =  (  seq 1
(  +  ,  ( m  e.  NN  |->  B ) ) `  n
) )
7359, 65, 72eqfnfvd 6314 . . . . . . . . . 10  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F  =  seq 1 (  +  , 
( m  e.  NN  |->  B ) ) )
7473adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F  =  seq 1 (  +  ,  ( m  e.  NN  |->  B ) ) )
7574, 3eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  seq 1 (  +  , 
( m  e.  NN  |->  B ) )  e. 
dom 
~~>  )
761, 2, 43, 47, 75isumrecl 14496 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  sum_ k  e.  NN  A  e.  RR )
7746simprd 479 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  /\  k  e.  NN )  ->  0  <_  A )
781, 2, 43, 47, 75, 77isumge0 14497 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  0  <_ 
sum_ k  e.  NN  A )
79 elrege0 12278 . . . . . . 7  |-  ( sum_ k  e.  NN  A  e.  ( 0 [,) +oo ) 
<->  ( sum_ k  e.  NN  A  e.  RR  /\  0  <_ 
sum_ k  e.  NN  A ) )
8076, 78, 79sylanbrc 698 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  sum_ k  e.  NN  A  e.  ( 0 [,) +oo )
)
81 ssid 3624 . . . . . 6  |-  ( 0 [,) +oo )  C_  ( 0 [,) +oo )
8229, 33, 80, 81lmlimxrge0 29994 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  ( F ( ~~> t `  J ) sum_ k  e.  NN  A  <->  F  ~~>  sum_ k  e.  NN  A ) )
8328, 82mpbird 247 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F
( ~~> t `  J
) sum_ k  e.  NN  A )
8416, 3syl5eqelr 2706 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  (
n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  e. 
dom 
~~>  )
8522eleq1d 2686 . . . . . . 7  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  ( (
n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  e. 
dom 
~~> 
<->  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A )  e.  dom  ~~>  ) )
8685adantr 481 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  e. 
dom 
~~> 
<->  ( n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A )  e.  dom  ~~>  ) )
8784, 86mpbid 222 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  (
n  e.  NN  |->  sum_ k  e.  ( 1 ... n ) A )  e.  dom  ~~>  )
8844, 7, 87esumpcvgval 30140 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  -> Σ* k  e.  NN A  =  sum_ k  e.  NN  A )
8983, 88breqtrrd 4681 . . 3  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  F  e.  dom  ~~>  )  ->  F
( ~~> t `  J
)Σ* k  e.  NN A
)
9032adantr 481 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  F : NN --> ( 0 [,) +oo ) )
91 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  n  e.  NN )
9291nnzd 11481 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  n  e.  ZZ )
93 uzid 11702 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
94 peano2uz 11741 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  n
)  ->  ( n  +  1 )  e.  ( ZZ>= `  n )
)
9592, 93, 943syl 18 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  ( ZZ>= `  n ) )
96 simplll 798 . . . . . . . 8  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  NN )  ->  ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
) )
9796, 13sylancom 701 . . . . . . 7  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  NN )  ->  A  e.  ( 0 [,) +oo ) )
9891, 95, 97esumpmono 30141 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... n ) A  <_ Σ* k  e.  ( 1 ... (
n  +  1 ) ) A )
9926, 21eqtr4d 2659 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  n  e.  NN )  ->  ( F `  n )  = Σ* k  e.  ( 1 ... n ) A )
10099adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  n
)  = Σ* k  e.  ( 1 ... n ) A )
101 oveq2 6658 . . . . . . . . . . 11  |-  ( l  =  n  ->  (
1 ... l )  =  ( 1 ... n
) )
102 esumeq1 30096 . . . . . . . . . . 11  |-  ( ( 1 ... l )  =  ( 1 ... n )  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... n ) A )
103101, 102syl 17 . . . . . . . . . 10  |-  ( l  =  n  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... n ) A )
104103cbvmptv 4750 . . . . . . . . 9  |-  ( l  e.  NN  |-> Σ* k  e.  ( 1 ... l ) A )  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )
10516, 104eqtr4i 2647 . . . . . . . 8  |-  F  =  ( l  e.  NN  |-> Σ* k  e.  ( 1 ... l
) A )
106105a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  F  =  ( l  e.  NN  |-> Σ* k  e.  ( 1 ... l ) A ) )
107 simpr3 1069 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  ( -.  F  e.  dom  ~~>  /\  n  e.  NN  /\  l  =  ( n  +  1 ) ) )  ->  l  =  ( n  +  1
) )
108 oveq2 6658 . . . . . . . . 9  |-  ( l  =  ( n  + 
1 )  ->  (
1 ... l )  =  ( 1 ... (
n  +  1 ) ) )
109 esumeq1 30096 . . . . . . . . 9  |-  ( ( 1 ... l )  =  ( 1 ... ( n  +  1 ) )  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... ( n  +  1 ) ) A )
110107, 108, 1093syl 18 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  ( -.  F  e.  dom  ~~>  /\  n  e.  NN  /\  l  =  ( n  +  1 ) ) )  -> Σ* k  e.  ( 1 ... l ) A  = Σ* k  e.  ( 1 ... ( n  +  1 ) ) A )
1111103anassrs 1290 . . . . . . 7  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  l  =  ( n  + 
1 ) )  -> Σ* k  e.  ( 1 ... l
) A  = Σ* k  e.  ( 1 ... (
n  +  1 ) ) A )
11291peano2nnd 11037 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
113 ovex 6678 . . . . . . . 8  |-  ( 1 ... ( n  + 
1 ) )  e. 
_V
114 simp-4l 806 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  ( 1 ... (
n  +  1 ) ) )  ->  ph )
115 elfznn 12370 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( n  +  1 ) )  ->  k  e.  NN )
116115adantl 482 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  ( 1 ... (
n  +  1 ) ) )  ->  k  e.  NN )
117114, 116, 41syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  n  e.  NN )  /\  k  e.  ( 1 ... (
n  +  1 ) ) )  ->  A  e.  ( 0 [,] +oo ) )
118117ralrimiva 2966 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  A. k  e.  ( 1 ... ( n  +  1 ) ) A  e.  ( 0 [,] +oo ) )
119 nfcv 2764 . . . . . . . . 9  |-  F/_ k
( 1 ... (
n  +  1 ) )
120119esumcl 30092 . . . . . . . 8  |-  ( ( ( 1 ... (
n  +  1 ) )  e.  _V  /\  A. k  e.  ( 1 ... ( n  + 
1 ) ) A  e.  ( 0 [,] +oo ) )  -> Σ* k  e.  ( 1 ... ( n  +  1 ) ) A  e.  ( 0 [,] +oo ) )
121113, 118, 120sylancr 695 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  -> Σ* k  e.  ( 1 ... ( n  +  1 ) ) A  e.  ( 0 [,] +oo ) )
122106, 111, 112, 121fvmptd 6288 . . . . . 6  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  (
n  +  1 ) )  = Σ* k  e.  ( 1 ... ( n  +  1 ) ) A )
12398, 100, 1223brtr4d 4685 . . . . 5  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  n  e.  NN )  ->  ( F `  n
)  <_  ( F `  ( n  +  1 ) ) )
124 simpr 477 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  -.  F  e.  dom  ~~>  )
12529, 90, 123, 124lmdvglim 30000 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  F ( ~~> t `  J ) +oo )
126 nfv 1843 . . . . . . 7  |-  F/ k ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )
127 nfcv 2764 . . . . . . 7  |-  F/_ k NN
128 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
129128a1i 11 . . . . . . 7  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  NN  e.  _V )
13041adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
131 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  ( ~P NN  i^i  Fin ) )
132 simpll 790 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
) )
133 inss1 3833 . . . . . . . . . . . . . 14  |-  ( ~P NN  i^i  Fin )  C_ 
~P NN
134 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  x  e.  ( ~P NN  i^i  Fin ) )
135133, 134sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  x  e.  ~P NN )
136135elpwid 4170 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  x  C_  NN )
137 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  x )
138136, 137sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  NN )
139132, 138, 13syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  ( 0 [,) +oo ) )
140 eqid 2622 . . . . . . . . . 10  |-  ( k  e.  x  |->  A )  =  ( k  e.  x  |->  A )
141139, 140fmptd 6385 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (
k  e.  x  |->  A ) : x --> ( 0 [,) +oo ) )
142 esumpfinvallem 30136 . . . . . . . . 9  |-  ( ( x  e.  ( ~P NN  i^i  Fin )  /\  ( k  e.  x  |->  A ) : x --> ( 0 [,) +oo ) )  ->  (fld  gsumg  ( k  e.  x  |->  A ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  A ) ) )
143131, 141, 142syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (fld  gsumg  ( k  e.  x  |->  A ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  A ) ) )
144 inss2 3834 . . . . . . . . . 10  |-  ( ~P NN  i^i  Fin )  C_ 
Fin
145144, 131sseldi 3601 . . . . . . . . 9  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  Fin )
146132, 138, 14syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  CC )
147145, 146gsumfsum 19813 . . . . . . . 8  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (fld  gsumg  ( k  e.  x  |->  A ) )  = 
sum_ k  e.  x  A )
148143, 147eqtr3d 2658 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  A ) )  = 
sum_ k  e.  x  A )
149126, 127, 129, 130, 148esumval 30108 . . . . . 6  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  -> Σ* k  e.  NN A  =  sup ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) ,  RR* ,  <  ) )
150149adantr 481 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> Σ* k  e.  NN A  =  sup ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) ,  RR* ,  <  ) )
15190, 123, 124lmdvg 29999 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  A. y  e.  RR  E. l  e.  NN  A. n  e.  ( ZZ>= `  l ) y  < 
( F `  n
) )
152151r19.21bi 2932 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. l  e.  NN  A. n  e.  ( ZZ>= `  l ) y  < 
( F `  n
) )
153 nnz 11399 . . . . . . . . . . . . 13  |-  ( l  e.  NN  ->  l  e.  ZZ )
154 uzid 11702 . . . . . . . . . . . . 13  |-  ( l  e.  ZZ  ->  l  e.  ( ZZ>= `  l )
)
155153, 154syl 17 . . . . . . . . . . . 12  |-  ( l  e.  NN  ->  l  e.  ( ZZ>= `  l )
)
156 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( l  e.  NN  /\  n  =  l )  ->  n  =  l )
157156fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( l  e.  NN  /\  n  =  l )  ->  ( F `  n
)  =  ( F `
 l ) )
158157breq2d 4665 . . . . . . . . . . . 12  |-  ( ( l  e.  NN  /\  n  =  l )  ->  ( y  <  ( F `  n )  <->  y  <  ( F `  l ) ) )
159155, 158rspcdv 3312 . . . . . . . . . . 11  |-  ( l  e.  NN  ->  ( A. n  e.  ( ZZ>=
`  l ) y  <  ( F `  n )  ->  y  <  ( F `  l
) ) )
160159reximia 3009 . . . . . . . . . 10  |-  ( E. l  e.  NN  A. n  e.  ( ZZ>= `  l ) y  < 
( F `  n
)  ->  E. l  e.  NN  y  <  ( F `  l )
)
161152, 160syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. l  e.  NN  y  <  ( F `  l ) )
162 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  y  e.  RR )
16390ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  F : NN --> ( 0 [,) +oo ) )
164 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  l  e.  NN )
165163, 164ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  e.  ( 0 [,) +oo ) )
1664, 165sseldi 3601 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  e.  RR )
167 ltle 10126 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  ( F `  l )  e.  RR )  -> 
( y  <  ( F `  l )  ->  y  <_  ( F `  l ) ) )
168162, 166, 167syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
y  <  ( F `  l )  ->  y  <_  ( F `  l
) ) )
16916a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  F  =  ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A ) )
170 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( n  =  l  ->  (
1 ... n )  =  ( 1 ... l
) )
171 esumeq1 30096 . . . . . . . . . . . . . . . 16  |-  ( ( 1 ... n )  =  ( 1 ... l )  -> Σ* k  e.  ( 1 ... n ) A  = Σ* k  e.  ( 1 ... l ) A )
172170, 171syl 17 . . . . . . . . . . . . . . 15  |-  ( n  =  l  -> Σ* k  e.  ( 1 ... n ) A  = Σ* k  e.  ( 1 ... l ) A )
173172adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  n  =  l )  -> Σ* k  e.  ( 1 ... n
) A  = Σ* k  e.  ( 1 ... l
) A )
174 esumex 30091 . . . . . . . . . . . . . . 15  |- Σ* k  e.  ( 1 ... l ) A  e.  _V
175174a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  -> Σ* k  e.  ( 1 ... l ) A  e.  _V )
176169, 173, 164, 175fvmptd 6288 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  = Σ* k  e.  ( 1 ... l ) A )
177 fzfid 12772 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
1 ... l )  e. 
Fin )
178 simp-4l 806 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  k  e.  ( 1 ... l
) )  ->  ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
) )
179 elfznn 12370 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... l )  ->  k  e.  NN )
180179adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  k  e.  ( 1 ... l
) )  ->  k  e.  NN )
181178, 180, 13syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  /\  k  e.  ( 1 ... l
) )  ->  A  e.  ( 0 [,) +oo ) )
182177, 181esumpfinval 30137 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  -> Σ* k  e.  ( 1 ... l ) A  =  sum_ k  e.  ( 1 ... l
) A )
183176, 182eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  ( F `  l )  =  sum_ k  e.  ( 1 ... l ) A )
184183breq2d 4665 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
y  <_  ( F `  l )  <->  y  <_  sum_ k  e.  ( 1 ... l ) A ) )
185168, 184sylibd 229 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  y  e.  RR )  /\  l  e.  NN )  ->  (
y  <  ( F `  l )  ->  y  <_ 
sum_ k  e.  ( 1 ... l ) A ) )
186185reximdva 3017 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  ( E. l  e.  NN  y  <  ( F `  l )  ->  E. l  e.  NN  y  <_  sum_ k  e.  ( 1 ... l ) A ) )
187161, 186mpd 15 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. l  e.  NN  y  <_  sum_ k  e.  ( 1 ... l ) A )
188 fzssuz 12382 . . . . . . . . . . . . . 14  |-  ( 1 ... l )  C_  ( ZZ>= `  1 )
189188, 1sseqtr4i 3638 . . . . . . . . . . . . 13  |-  ( 1 ... l )  C_  NN
190 ovex 6678 . . . . . . . . . . . . . 14  |-  ( 1 ... l )  e. 
_V
191190elpw 4164 . . . . . . . . . . . . 13  |-  ( ( 1 ... l )  e.  ~P NN  <->  ( 1 ... l )  C_  NN )
192189, 191mpbir 221 . . . . . . . . . . . 12  |-  ( 1 ... l )  e. 
~P NN
193 fzfi 12771 . . . . . . . . . . . 12  |-  ( 1 ... l )  e. 
Fin
194 elin 3796 . . . . . . . . . . . 12  |-  ( ( 1 ... l )  e.  ( ~P NN  i^i  Fin )  <->  ( (
1 ... l )  e. 
~P NN  /\  (
1 ... l )  e. 
Fin ) )
195192, 193, 194mpbir2an 955 . . . . . . . . . . 11  |-  ( 1 ... l )  e.  ( ~P NN  i^i  Fin )
196 sumex 14418 . . . . . . . . . . 11  |-  sum_ k  e.  ( 1 ... l
) A  e.  _V
197 eqid 2622 . . . . . . . . . . . 12  |-  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )  =  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )
198 sumeq1 14419 . . . . . . . . . . . 12  |-  ( x  =  ( 1 ... l )  ->  sum_ k  e.  x  A  =  sum_ k  e.  ( 1 ... l ) A )
199197, 198elrnmpt1s 5373 . . . . . . . . . . 11  |-  ( ( ( 1 ... l
)  e.  ( ~P NN  i^i  Fin )  /\  sum_ k  e.  ( 1 ... l ) A  e.  _V )  -> 
sum_ k  e.  ( 1 ... l ) A  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) )
200195, 196, 199mp2an 708 . . . . . . . . . 10  |-  sum_ k  e.  ( 1 ... l
) A  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A )
201 nfv 1843 . . . . . . . . . . 11  |-  F/ z  y  <_  sum_ k  e.  ( 1 ... l
) A
202 breq2 4657 . . . . . . . . . . 11  |-  ( z  =  sum_ k  e.  ( 1 ... l ) A  ->  ( y  <_  z  <->  y  <_  sum_ k  e.  ( 1 ... l
) A ) )
203201, 202rspce 3304 . . . . . . . . . 10  |-  ( (
sum_ k  e.  ( 1 ... l ) A  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A )  /\  y  <_ 
sum_ k  e.  ( 1 ... l ) A )  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z )
204200, 203mpan 706 . . . . . . . . 9  |-  ( y  <_  sum_ k  e.  ( 1 ... l ) A  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z )
205204rexlimivw 3029 . . . . . . . 8  |-  ( E. l  e.  NN  y  <_ 
sum_ k  e.  ( 1 ... l ) A  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z )
206187, 205syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  y  e.  RR )  ->  E. z  e.  ran  ( x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) y  <_ 
z )
207206ralrimiva 2966 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  A. y  e.  RR  E. z  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) y  <_ 
z )
208 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  ( ~P NN  i^i  Fin ) )
209144, 208sseldi 3601 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  x  e.  Fin )
210139adantllr 755 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  ( 0 [,) +oo ) )
2114, 210sseldi 3601 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e. 
dom 
~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  /\  k  e.  x )  ->  A  e.  RR )
212209, 211fsumrecl 14465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  sum_ k  e.  x  A  e.  RR )
213212rexrd 10089 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  /\  x  e.  ( ~P NN  i^i  Fin ) )  ->  sum_ k  e.  x  A  e.  RR* )
214213, 197fmptd 6385 . . . . . . 7  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> 
( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) : ( ~P NN  i^i  Fin )
--> RR* )
215 frn 6053 . . . . . . 7  |-  ( ( x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) : ( ~P NN  i^i  Fin )
--> RR*  ->  ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )  C_ 
RR* )
216 supxrunb1 12149 . . . . . . 7  |-  ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A )  C_  RR*  ->  ( A. y  e.  RR  E. z  e.  ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) y  <_ 
z  <->  sup ( ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) ,  RR* ,  <  )  = +oo ) )
217214, 215, 2163syl 18 . . . . . 6  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> 
( A. y  e.  RR  E. z  e. 
ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) y  <_ 
z  <->  sup ( ran  (
x  e.  ( ~P NN  i^i  Fin )  |-> 
sum_ k  e.  x  A ) ,  RR* ,  <  )  = +oo ) )
218207, 217mpbid 222 . . . . 5  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  sup ( ran  ( x  e.  ( ~P NN  i^i  Fin )  |->  sum_ k  e.  x  A ) ,  RR* ,  <  )  = +oo )
219150, 218eqtrd 2656 . . . 4  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  -> Σ* k  e.  NN A  = +oo )
220125, 219breqtrrd 4681 . . 3  |-  ( ( ( ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo ) )  /\  -.  F  e.  dom  ~~>  )  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
22189, 220pm2.61dan 832 . 2  |-  ( (
ph  /\  A. m  e.  NN  B  e.  ( 0 [,) +oo )
)  ->  F ( ~~> t `  J )Σ* k  e.  NN A )
22216reseq1i 5392 . . . . . . . 8  |-  ( F  |`  ( ZZ>= `  k )
)  =  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  k )
)
223 eleq1 2689 . . . . . . . . . . . 12  |-  ( l  =  k  ->  (
l  e.  NN  <->  k  e.  NN ) )
224223anbi2d 740 . . . . . . . . . . 11  |-  ( l  =  k  ->  (
( ph  /\  l  e.  NN )  <->  ( ph  /\  k  e.  NN ) ) )
225 sbequ12r 2112 . . . . . . . . . . 11  |-  ( l  =  k  ->  ( [ l  /  k ] A  = +oo  <->  A  = +oo ) )
226224, 225anbi12d 747 . . . . . . . . . 10  |-  ( l  =  k  ->  (
( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo ) 
<->  ( ( ph  /\  k  e.  NN )  /\  A  = +oo ) ) )
227 fveq2 6191 . . . . . . . . . . . 12  |-  ( l  =  k  ->  ( ZZ>=
`  l )  =  ( ZZ>= `  k )
)
228227reseq2d 5396 . . . . . . . . . . 11  |-  ( l  =  k  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  l )
)  =  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  k )
) )
229227xpeq1d 5138 . . . . . . . . . . 11  |-  ( l  =  k  ->  (
( ZZ>= `  l )  X.  { +oo } )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )
230228, 229eqeq12d 2637 . . . . . . . . . 10  |-  ( l  =  k  ->  (
( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>= `  l ) )  =  ( ( ZZ>= `  l
)  X.  { +oo } )  <->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  k ) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) ) )
231226, 230imbi12d 334 . . . . . . . . 9  |-  ( l  =  k  ->  (
( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  l )
)  =  ( (
ZZ>= `  l )  X. 
{ +oo } ) )  <-> 
( ( ( ph  /\  k  e.  NN )  /\  A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  k ) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) ) ) )
232 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ k ( ph  /\  l  e.  NN )
233 nfs1v 2437 . . . . . . . . . . . . . 14  |-  F/ k [ l  /  k ] A  = +oo
234232, 233nfan 1828 . . . . . . . . . . . . 13  |-  F/ k ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )
235 nfv 1843 . . . . . . . . . . . . 13  |-  F/ k  n  e.  ( ZZ>= `  l )
236234, 235nfan 1828 . . . . . . . . . . . 12  |-  F/ k ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)
237 ovexd 6680 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  ( 1 ... n )  e.  _V )
238 simp-4l 806 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)  /\  k  e.  ( 1 ... n
) )  ->  ph )
23918adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)  /\  k  e.  ( 1 ... n
) )  ->  k  e.  NN )
240238, 239, 41syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  / 
k ] A  = +oo )  /\  n  e.  ( ZZ>= `  l )
)  /\  k  e.  ( 1 ... n
) )  ->  A  e.  ( 0 [,] +oo ) )
241 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  l  e.  NN )
242 elnnuz 11724 . . . . . . . . . . . . . . 15  |-  ( l  e.  NN  <->  l  e.  ( ZZ>= `  1 )
)
243 eluzfz 12337 . . . . . . . . . . . . . . 15  |-  ( ( l  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  l )
)  ->  l  e.  ( 1 ... n
) )
244242, 243sylanb 489 . . . . . . . . . . . . . 14  |-  ( ( l  e.  NN  /\  n  e.  ( ZZ>= `  l ) )  -> 
l  e.  ( 1 ... n ) )
245241, 244sylancom 701 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  l  e.  ( 1 ... n ) )
246 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  [ l  / 
k ] A  = +oo )
247 sbequ12 2111 . . . . . . . . . . . . . 14  |-  ( k  =  l  ->  ( A  = +oo  <->  [ l  /  k ] A  = +oo ) )
248233, 247rspce 3304 . . . . . . . . . . . . 13  |-  ( ( l  e.  ( 1 ... n )  /\  [ l  /  k ] A  = +oo )  ->  E. k  e.  ( 1 ... n ) A  = +oo )
249245, 246, 248syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  ->  E. k  e.  ( 1 ... n ) A  = +oo )
250236, 237, 240, 249esumpinfval 30135 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  n  e.  (
ZZ>= `  l ) )  -> Σ* k  e.  ( 1 ... n ) A  = +oo )
251250ralrimiva 2966 . . . . . . . . . 10  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  A. n  e.  (
ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )
252 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  ( ZZ>= `  l )  =  ( ZZ>= `  l
) )
253 mpteq12 4736 . . . . . . . . . . . 12  |-  ( ( ( ZZ>= `  l )  =  ( ZZ>= `  l
)  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A )  =  ( n  e.  ( ZZ>= `  l )  |-> +oo ) )
254252, 253sylan 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A )  =  ( n  e.  ( ZZ>= `  l )  |-> +oo ) )
255 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  l  e.  NN )
256 uznnssnn 11735 . . . . . . . . . . . . 13  |-  ( l  e.  NN  ->  ( ZZ>=
`  l )  C_  NN )
257 resmpt 5449 . . . . . . . . . . . . 13  |-  ( (
ZZ>= `  l )  C_  NN  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  l ) )  =  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A ) )
258255, 256, 2573syl 18 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>= `  l ) )  =  ( n  e.  (
ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n
) A ) )
259258adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  l ) )  =  ( n  e.  ( ZZ>= `  l )  |-> Σ* k  e.  ( 1 ... n ) A ) )
260 fconstmpt 5163 . . . . . . . . . . . 12  |-  ( (
ZZ>= `  l )  X. 
{ +oo } )  =  ( n  e.  (
ZZ>= `  l )  |-> +oo )
261260a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( ( ZZ>= `  l )  X.  { +oo } )  =  ( n  e.  ( ZZ>= `  l )  |-> +oo )
)
262254, 259, 2613eqtr4d 2666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  l  e.  NN )  /\  [ l  /  k ] A  = +oo )  /\  A. n  e.  ( ZZ>= `  l )Σ* k  e.  ( 1 ... n
) A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>=
`  l ) )  =  ( ( ZZ>= `  l )  X.  { +oo } ) )
263251, 262mpdan 702 . . . . . . . . 9  |-  ( ( ( ph  /\  l  e.  NN )  /\  [
l  /  k ] A  = +oo )  ->  ( ( n  e.  NN  |-> Σ* k  e.  ( 1 ... n ) A )  |`  ( ZZ>= `  l ) )  =  ( ( ZZ>= `  l
)  X.  { +oo } ) )
264231, 263chvarv 2263 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  A  = +oo )  ->  (
( n  e.  NN  |-> Σ* k  e.  ( 1 ... n
) A )  |`  ( ZZ>= `  k )
)  =  ( (
ZZ>= `  k )  X. 
{ +oo } ) )
265222, 264syl5eq 2668 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  A  = +oo )  ->  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )
266265ex 450 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  = +oo  ->  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) ) )
267266reximdva 3017 . . . . 5  |-  ( ph  ->  ( E. k  e.  NN  A  = +oo  ->  E. k  e.  NN  ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } ) ) )
268267imp 445 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  E. k  e.  NN  ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } ) )
269 xrge0topn 29989 . . . . . . . . . . 11  |-  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
27029, 269eqtri 2644 . . . . . . . . . 10  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
271 letopon 21009 . . . . . . . . . . 11  |-  (ordTop `  <_  )  e.  (TopOn `  RR* )
272 iccssxr 12256 . . . . . . . . . . 11  |-  ( 0 [,] +oo )  C_  RR*
273 resttopon 20965 . . . . . . . . . . 11  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ( 0 [,] +oo )  C_  RR* )  ->  (
(ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  (
0 [,] +oo )
) )
274271, 272, 273mp2an 708 . . . . . . . . . 10  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  ( 0 [,] +oo ) )
275270, 274eqeltri 2697 . . . . . . . . 9  |-  J  e.  (TopOn `  ( 0 [,] +oo ) )
276275a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  J  e.  (TopOn `  ( 0 [,] +oo ) ) )
277 0xr 10086 . . . . . . . . . 10  |-  0  e.  RR*
278 pnfxr 10092 . . . . . . . . . 10  |- +oo  e.  RR*
279 0lepnf 11966 . . . . . . . . . 10  |-  0  <_ +oo
280 ubicc2 12289 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  <_ +oo )  -> +oo  e.  ( 0 [,] +oo ) )
281277, 278, 279, 280mp3an 1424 . . . . . . . . 9  |- +oo  e.  ( 0 [,] +oo )
282281a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  -> +oo  e.  ( 0 [,] +oo ) )
28340nnzd 11481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ZZ )
284 eqid 2622 . . . . . . . . 9  |-  ( ZZ>= `  k )  =  (
ZZ>= `  k )
285284lmconst 21065 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  ( 0 [,] +oo ) )  /\ +oo  e.  ( 0 [,] +oo )  /\  k  e.  ZZ )  ->  ( ( ZZ>= `  k )  X.  { +oo } ) ( ~~> t `  J ) +oo )
286276, 282, 283, 285syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( (
ZZ>= `  k )  X. 
{ +oo } ) ( ~~> t `  J ) +oo )
287 breq1 4656 . . . . . . . 8  |-  ( ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } )  ->  ( ( F  |`  ( ZZ>= `  k
) ) ( ~~> t `  J ) +oo  <->  ( ( ZZ>=
`  k )  X. 
{ +oo } ) ( ~~> t `  J ) +oo ) )
288287biimprd 238 . . . . . . 7  |-  ( ( F  |`  ( ZZ>= `  k ) )  =  ( ( ZZ>= `  k
)  X.  { +oo } )  ->  ( (
( ZZ>= `  k )  X.  { +oo } ) ( ~~> t `  J
) +oo  ->  ( F  |`  ( ZZ>= `  k )
) ( ~~> t `  J ) +oo )
)
289286, 288mpan9 486 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )  ->  ( F  |`  ( ZZ>= `  k )
) ( ~~> t `  J ) +oo )
290 ovexd 6680 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0 [,] +oo )  e. 
_V )
291 cnex 10017 . . . . . . . . . 10  |-  CC  e.  _V
292291a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  CC  e.  _V )
29356adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  F : NN
--> ( 0 [,] +oo ) )
294 nnsscn 11025 . . . . . . . . . 10  |-  NN  C_  CC
295294a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  NN  C_  CC )
296 elpm2r 7875 . . . . . . . . 9  |-  ( ( ( ( 0 [,] +oo )  e.  _V  /\  CC  e.  _V )  /\  ( F : NN --> ( 0 [,] +oo )  /\  NN  C_  CC ) )  ->  F  e.  ( ( 0 [,] +oo )  ^pm  CC ) )
297290, 292, 293, 295, 296syl22anc 1327 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  F  e.  ( ( 0 [,] +oo )  ^pm  CC ) )
298276, 297, 283lmres 21104 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F ( ~~> t `  J
) +oo  <->  ( F  |`  ( ZZ>= `  k )
) ( ~~> t `  J ) +oo )
)
299298biimpar 502 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F  |`  ( ZZ>= `  k
) ) ( ~~> t `  J ) +oo )  ->  F ( ~~> t `  J ) +oo )
300289, 299syldan 487 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F  |`  ( ZZ>= `  k
) )  =  ( ( ZZ>= `  k )  X.  { +oo } ) )  ->  F ( ~~> t `  J ) +oo )
301300r19.29an 3077 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  ( F  |`  ( ZZ>= `  k )
)  =  ( (
ZZ>= `  k )  X. 
{ +oo } ) )  ->  F ( ~~> t `  J ) +oo )
302268, 301syldan 487 . . 3  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  F ( ~~> t `  J ) +oo )
303 nfv 1843 . . . . 5  |-  F/ k
ph
304 nfre1 3005 . . . . 5  |-  F/ k E. k  e.  NN  A  = +oo
305303, 304nfan 1828 . . . 4  |-  F/ k ( ph  /\  E. k  e.  NN  A  = +oo )
306128a1i 11 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  NN  e.  _V )
30741adantlr 751 . . . 4  |-  ( ( ( ph  /\  E. k  e.  NN  A  = +oo )  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
308 simpr 477 . . . 4  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  E. k  e.  NN  A  = +oo )
309305, 306, 307, 308esumpinfval 30135 . . 3  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  -> Σ* k  e.  NN A  = +oo )
310302, 309breqtrrd 4681 . 2  |-  ( (
ph  /\  E. k  e.  NN  A  = +oo )  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
311 eleq1 2689 . . . . . . . . 9  |-  ( k  =  m  ->  (
k  e.  NN  <->  m  e.  NN ) )
312311anbi2d 740 . . . . . . . 8  |-  ( k  =  m  ->  (
( ph  /\  k  e.  NN )  <->  ( ph  /\  m  e.  NN ) ) )
3137eleq1d 2686 . . . . . . . 8  |-  ( k  =  m  ->  ( A  e.  ( 0 [,] +oo )  <->  B  e.  ( 0 [,] +oo ) ) )
314312, 313imbi12d 334 . . . . . . 7  |-  ( k  =  m  ->  (
( ( ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )  <-> 
( ( ph  /\  m  e.  NN )  ->  B  e.  ( 0 [,] +oo ) ) ) )
315314, 41chvarv 2263 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  B  e.  ( 0 [,] +oo ) )
316 eliccelico 29539 . . . . . . 7  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  <_ +oo )  ->  ( B  e.  ( 0 [,] +oo )  <->  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo ) ) )
317277, 278, 279, 316mp3an 1424 . . . . . 6  |-  ( B  e.  ( 0 [,] +oo )  <->  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo ) )
318315, 317sylib 208 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo ) )
319318ralrimiva 2966 . . . 4  |-  ( ph  ->  A. m  e.  NN  ( B  e.  (
0 [,) +oo )  \/  B  = +oo ) )
320 r19.30 3082 . . . 4  |-  ( A. m  e.  NN  ( B  e.  ( 0 [,) +oo )  \/  B  = +oo )  ->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/  E. m  e.  NN  B  = +oo )
)
321319, 320syl 17 . . 3  |-  ( ph  ->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/  E. m  e.  NN  B  = +oo )
)
3227eqeq1d 2624 . . . . 5  |-  ( k  =  m  ->  ( A  = +oo  <->  B  = +oo ) )
323322cbvrexv 3172 . . . 4  |-  ( E. k  e.  NN  A  = +oo  <->  E. m  e.  NN  B  = +oo )
324323orbi2i 541 . . 3  |-  ( ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/ 
E. k  e.  NN  A  = +oo )  <->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/ 
E. m  e.  NN  B  = +oo )
)
325321, 324sylibr 224 . 2  |-  ( ph  ->  ( A. m  e.  NN  B  e.  ( 0 [,) +oo )  \/  E. k  e.  NN  A  = +oo )
)
326221, 310, 325mpjaodan 827 1  |-  ( ph  ->  F ( ~~> t `  J )Σ* k  e.  NN A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   [wsb 1880    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   Fincfn 7955   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177   [,]cicc 12178   ...cfz 12326    seqcseq 12801    ~~> cli 14215   sum_csu 14416   ↾s cress 15858   ↾t crest 16081   TopOpenctopn 16082    gsumg cgsu 16101  ordTopcordt 16159   RR*scxrs 16160  ℂfldccnfld 19746  TopOnctopon 20715   ~~> tclm 21030  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090
This theorem is referenced by:  esumcvg2  30149
  Copyright terms: Public domain W3C validator