MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabrsn Structured version   Visualization version   Unicode version

Theorem rabrsn 4259
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.)
Assertion
Ref Expression
rabrsn  |-  ( M  =  { x  e. 
{ A }  |  ph }  ->  ( M  =  (/)  \/  M  =  { A } ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    M( x)

Proof of Theorem rabrsn
StepHypRef Expression
1 rabsnifsb 4257 . . 3  |-  { x  e.  { A }  |  ph }  =  if (
[. A  /  x ]. ph ,  { A } ,  (/) )
21eqeq2i 2634 . 2  |-  ( M  =  { x  e. 
{ A }  |  ph }  <->  M  =  if ( [. A  /  x ]. ph ,  { A } ,  (/) ) )
3 ifeqor 4132 . . . 4  |-  ( if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  { A }  \/  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  (/) )
4 orcom 402 . . . 4  |-  ( ( if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  { A }  \/  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  (/) )  <->  ( if (
[. A  /  x ]. ph ,  { A } ,  (/) )  =  (/)  \/  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  { A } ) )
53, 4mpbi 220 . . 3  |-  ( if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  (/)  \/  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  { A } )
6 eqeq1 2626 . . . 4  |-  ( M  =  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  ->  ( M  =  (/) 
<->  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  (/) ) )
7 eqeq1 2626 . . . 4  |-  ( M  =  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  ->  ( M  =  { A }  <->  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  { A } ) )
86, 7orbi12d 746 . . 3  |-  ( M  =  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  ->  ( ( M  =  (/)  \/  M  =  { A } )  <-> 
( if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  (/)  \/  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  { A } ) ) )
95, 8mpbiri 248 . 2  |-  ( M  =  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  ->  ( M  =  (/)  \/  M  =  { A } ) )
102, 9sylbi 207 1  |-  ( M  =  { x  e. 
{ A }  |  ph }  ->  ( M  =  (/)  \/  M  =  { A } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    = wceq 1483   {crab 2916   [.wsbc 3435   (/)c0 3915   ifcif 4086   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-nul 3916  df-if 4087  df-sn 4178
This theorem is referenced by:  hashrabrsn  13161  hashrabsn01  13162  hashrabsn1  13163  dvnprodlem3  40163
  Copyright terms: Public domain W3C validator