MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeqor Structured version   Visualization version   Unicode version

Theorem ifeqor 4132
Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ifeqor  |-  ( if ( ph ,  A ,  B )  =  A  \/  if ( ph ,  A ,  B )  =  B )

Proof of Theorem ifeqor
StepHypRef Expression
1 iftrue 4092 . . . 4  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
21con3i 150 . . 3  |-  ( -.  if ( ph ,  A ,  B )  =  A  ->  -.  ph )
32iffalsed 4097 . 2  |-  ( -.  if ( ph ,  A ,  B )  =  A  ->  if (
ph ,  A ,  B )  =  B )
43orri 391 1  |-  ( if ( ph ,  A ,  B )  =  A  \/  if ( ph ,  A ,  B )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    = wceq 1483   ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  ifpr  4233  rabrsn  4259  prmolefac  15750  muval2  24860  finxpreclem2  33227  relexpxpmin  38009
  Copyright terms: Public domain W3C validator