MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsnif Structured version   Visualization version   Unicode version

Theorem rabsnif 4258
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypothesis
Ref Expression
rabsnif.f  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rabsnif  |-  { x  e.  { A }  |  ph }  =  if ( ps ,  { A } ,  (/) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rabsnif
StepHypRef Expression
1 rabsnifsb 4257 . . 3  |-  { x  e.  { A }  |  ph }  =  if (
[. A  /  x ]. ph ,  { A } ,  (/) )
2 rabsnif.f . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32sbcieg 3468 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  ps ) )
43ifbid 4108 . . 3  |-  ( A  e.  _V  ->  if ( [. A  /  x ]. ph ,  { A } ,  (/) )  =  if ( ps ,  { A } ,  (/) ) )
51, 4syl5eq 2668 . 2  |-  ( A  e.  _V  ->  { x  e.  { A }  |  ph }  =  if ( ps ,  { A } ,  (/) ) )
6 rab0 3955 . . . 4  |-  { x  e.  (/)  |  ph }  =  (/)
7 ifid 4125 . . . 4  |-  if ( ps ,  (/) ,  (/) )  =  (/)
86, 7eqtr4i 2647 . . 3  |-  { x  e.  (/)  |  ph }  =  if ( ps ,  (/)
,  (/) )
9 snprc 4253 . . . . 5  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
109biimpi 206 . . . 4  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
1110rabeqdv 3194 . . 3  |-  ( -.  A  e.  _V  ->  { x  e.  { A }  |  ph }  =  { x  e.  (/)  |  ph } )
1210ifeq1d 4104 . . 3  |-  ( -.  A  e.  _V  ->  if ( ps ,  { A } ,  (/) )  =  if ( ps ,  (/)
,  (/) ) )
138, 11, 123eqtr4a 2682 . 2  |-  ( -.  A  e.  _V  ->  { x  e.  { A }  |  ph }  =  if ( ps ,  { A } ,  (/) ) )
145, 13pm2.61i 176 1  |-  { x  e.  { A }  |  ph }  =  if ( ps ,  { A } ,  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [.wsbc 3435   (/)c0 3915   ifcif 4086   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-nul 3916  df-if 4087  df-sn 4178
This theorem is referenced by:  suppsnop  7309  m1detdiag  20403  1loopgrvd2  26399  1hevtxdg1  26402  1egrvtxdg1  26405
  Copyright terms: Public domain W3C validator