MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsnifsb Structured version   Visualization version   Unicode version

Theorem rabsnifsb 4257
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 21-Jul-2019.)
Assertion
Ref Expression
rabsnifsb  |-  { x  e.  { A }  |  ph }  =  if (
[. A  /  x ]. ph ,  { A } ,  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabsnifsb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elsni 4194 . . . . . . . 8  |-  ( x  e.  { A }  ->  x  =  A )
2 sbceq1a 3446 . . . . . . . . 9  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
32biimpd 219 . . . . . . . 8  |-  ( x  =  A  ->  ( ph  ->  [. A  /  x ]. ph ) )
41, 3syl 17 . . . . . . 7  |-  ( x  e.  { A }  ->  ( ph  ->  [. A  /  x ]. ph )
)
54imdistani 726 . . . . . 6  |-  ( ( x  e.  { A }  /\  ph )  -> 
( x  e.  { A }  /\  [. A  /  x ]. ph )
)
65orcd 407 . . . . 5  |-  ( ( x  e.  { A }  /\  ph )  -> 
( ( x  e. 
{ A }  /\  [. A  /  x ]. ph )  \/  ( x  e.  (/)  /\  -.  [. A  /  x ]. ph )
) )
72biimprd 238 . . . . . . . 8  |-  ( x  =  A  ->  ( [. A  /  x ]. ph  ->  ph ) )
81, 7syl 17 . . . . . . 7  |-  ( x  e.  { A }  ->  ( [. A  /  x ]. ph  ->  ph )
)
98imdistani 726 . . . . . 6  |-  ( ( x  e.  { A }  /\  [. A  /  x ]. ph )  -> 
( x  e.  { A }  /\  ph )
)
10 noel 3919 . . . . . . . 8  |-  -.  x  e.  (/)
1110pm2.21i 116 . . . . . . 7  |-  ( x  e.  (/)  ->  ( x  e.  { A }  /\  ph ) )
1211adantr 481 . . . . . 6  |-  ( ( x  e.  (/)  /\  -.  [. A  /  x ]. ph )  ->  ( x  e.  { A }  /\  ph ) )
139, 12jaoi 394 . . . . 5  |-  ( ( ( x  e.  { A }  /\  [. A  /  x ]. ph )  \/  ( x  e.  (/)  /\ 
-.  [. A  /  x ]. ph ) )  -> 
( x  e.  { A }  /\  ph )
)
146, 13impbii 199 . . . 4  |-  ( ( x  e.  { A }  /\  ph )  <->  ( (
x  e.  { A }  /\  [. A  /  x ]. ph )  \/  ( x  e.  (/)  /\ 
-.  [. A  /  x ]. ph ) ) )
1514abbii 2739 . . 3  |-  { x  |  ( x  e. 
{ A }  /\  ph ) }  =  {
x  |  ( ( x  e.  { A }  /\  [. A  /  x ]. ph )  \/  ( x  e.  (/)  /\ 
-.  [. A  /  x ]. ph ) ) }
16 nfv 1843 . . . 4  |-  F/ y ( ( x  e. 
{ A }  /\  [. A  /  x ]. ph )  \/  ( x  e.  (/)  /\  -.  [. A  /  x ]. ph )
)
17 nfv 1843 . . . . . 6  |-  F/ x  y  e.  { A }
18 nfsbc1v 3455 . . . . . 6  |-  F/ x [. A  /  x ]. ph
1917, 18nfan 1828 . . . . 5  |-  F/ x
( y  e.  { A }  /\  [. A  /  x ]. ph )
20 nfv 1843 . . . . . 6  |-  F/ x  y  e.  (/)
2118nfn 1784 . . . . . 6  |-  F/ x  -.  [. A  /  x ]. ph
2220, 21nfan 1828 . . . . 5  |-  F/ x
( y  e.  (/)  /\ 
-.  [. A  /  x ]. ph )
2319, 22nfor 1834 . . . 4  |-  F/ x
( ( y  e. 
{ A }  /\  [. A  /  x ]. ph )  \/  ( y  e.  (/)  /\  -.  [. A  /  x ]. ph )
)
24 eleq1 2689 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  { A } 
<->  y  e.  { A } ) )
2524anbi1d 741 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  { A }  /\  [. A  /  x ]. ph )  <->  ( y  e.  { A }  /\  [. A  /  x ]. ph ) ) )
26 eleq1 2689 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  (/)  <->  y  e.  (/) ) )
2726anbi1d 741 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  (/)  /\ 
-.  [. A  /  x ]. ph )  <->  ( y  e.  (/)  /\  -.  [. A  /  x ]. ph )
) )
2825, 27orbi12d 746 . . . 4  |-  ( x  =  y  ->  (
( ( x  e. 
{ A }  /\  [. A  /  x ]. ph )  \/  ( x  e.  (/)  /\  -.  [. A  /  x ]. ph )
)  <->  ( ( y  e.  { A }  /\  [. A  /  x ]. ph )  \/  (
y  e.  (/)  /\  -.  [. A  /  x ]. ph ) ) ) )
2916, 23, 28cbvab 2746 . . 3  |-  { x  |  ( ( x  e.  { A }  /\  [. A  /  x ]. ph )  \/  (
x  e.  (/)  /\  -.  [. A  /  x ]. ph ) ) }  =  { y  |  ( ( y  e.  { A }  /\  [. A  /  x ]. ph )  \/  ( y  e.  (/)  /\ 
-.  [. A  /  x ]. ph ) ) }
3015, 29eqtri 2644 . 2  |-  { x  |  ( x  e. 
{ A }  /\  ph ) }  =  {
y  |  ( ( y  e.  { A }  /\  [. A  /  x ]. ph )  \/  ( y  e.  (/)  /\ 
-.  [. A  /  x ]. ph ) ) }
31 df-rab 2921 . 2  |-  { x  e.  { A }  |  ph }  =  { x  |  ( x  e. 
{ A }  /\  ph ) }
32 df-if 4087 . 2  |-  if (
[. A  /  x ]. ph ,  { A } ,  (/) )  =  { y  |  ( ( y  e.  { A }  /\  [. A  /  x ]. ph )  \/  ( y  e.  (/)  /\ 
-.  [. A  /  x ]. ph ) ) }
3330, 31, 323eqtr4i 2654 1  |-  { x  e.  { A }  |  ph }  =  if (
[. A  /  x ]. ph ,  { A } ,  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   [.wsbc 3435   (/)c0 3915   ifcif 4086   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-nul 3916  df-if 4087  df-sn 4178
This theorem is referenced by:  rabsnif  4258  rabrsn  4259
  Copyright terms: Public domain W3C validator