| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabsnifsb | Structured version Visualization version Unicode version | ||
| Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabsnifsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4194 |
. . . . . . . 8
| |
| 2 | sbceq1a 3446 |
. . . . . . . . 9
| |
| 3 | 2 | biimpd 219 |
. . . . . . . 8
|
| 4 | 1, 3 | syl 17 |
. . . . . . 7
|
| 5 | 4 | imdistani 726 |
. . . . . 6
|
| 6 | 5 | orcd 407 |
. . . . 5
|
| 7 | 2 | biimprd 238 |
. . . . . . . 8
|
| 8 | 1, 7 | syl 17 |
. . . . . . 7
|
| 9 | 8 | imdistani 726 |
. . . . . 6
|
| 10 | noel 3919 |
. . . . . . . 8
| |
| 11 | 10 | pm2.21i 116 |
. . . . . . 7
|
| 12 | 11 | adantr 481 |
. . . . . 6
|
| 13 | 9, 12 | jaoi 394 |
. . . . 5
|
| 14 | 6, 13 | impbii 199 |
. . . 4
|
| 15 | 14 | abbii 2739 |
. . 3
|
| 16 | nfv 1843 |
. . . 4
| |
| 17 | nfv 1843 |
. . . . . 6
| |
| 18 | nfsbc1v 3455 |
. . . . . 6
| |
| 19 | 17, 18 | nfan 1828 |
. . . . 5
|
| 20 | nfv 1843 |
. . . . . 6
| |
| 21 | 18 | nfn 1784 |
. . . . . 6
|
| 22 | 20, 21 | nfan 1828 |
. . . . 5
|
| 23 | 19, 22 | nfor 1834 |
. . . 4
|
| 24 | eleq1 2689 |
. . . . . 6
| |
| 25 | 24 | anbi1d 741 |
. . . . 5
|
| 26 | eleq1 2689 |
. . . . . 6
| |
| 27 | 26 | anbi1d 741 |
. . . . 5
|
| 28 | 25, 27 | orbi12d 746 |
. . . 4
|
| 29 | 16, 23, 28 | cbvab 2746 |
. . 3
|
| 30 | 15, 29 | eqtri 2644 |
. 2
|
| 31 | df-rab 2921 |
. 2
| |
| 32 | df-if 4087 |
. 2
| |
| 33 | 30, 31, 32 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-nul 3916 df-if 4087 df-sn 4178 |
| This theorem is referenced by: rabsnif 4258 rabrsn 4259 |
| Copyright terms: Public domain | W3C validator |