MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsssn Structured version   Visualization version   Unicode version

Theorem rabsssn 4215
Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019.)
Assertion
Ref Expression
rabsssn  |-  ( { x  e.  V  |  ph }  C_  { X } 
<-> 
A. x  e.  V  ( ph  ->  x  =  X ) )
Distinct variable group:    x, X
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem rabsssn
StepHypRef Expression
1 df-rab 2921 . . 3  |-  { x  e.  V  |  ph }  =  { x  |  ( x  e.  V  /\  ph ) }
2 df-sn 4178 . . 3  |-  { X }  =  { x  |  x  =  X }
31, 2sseq12i 3631 . 2  |-  ( { x  e.  V  |  ph }  C_  { X } 
<->  { x  |  ( x  e.  V  /\  ph ) }  C_  { x  |  x  =  X } )
4 ss2ab 3670 . 2  |-  ( { x  |  ( x  e.  V  /\  ph ) }  C_  { x  |  x  =  X } 
<-> 
A. x ( ( x  e.  V  /\  ph )  ->  x  =  X ) )
5 impexp 462 . . . 4  |-  ( ( ( x  e.  V  /\  ph )  ->  x  =  X )  <->  ( x  e.  V  ->  ( ph  ->  x  =  X ) ) )
65albii 1747 . . 3  |-  ( A. x ( ( x  e.  V  /\  ph )  ->  x  =  X )  <->  A. x ( x  e.  V  ->  ( ph  ->  x  =  X ) ) )
7 df-ral 2917 . . 3  |-  ( A. x  e.  V  ( ph  ->  x  =  X )  <->  A. x ( x  e.  V  ->  ( ph  ->  x  =  X ) ) )
86, 7bitr4i 267 . 2  |-  ( A. x ( ( x  e.  V  /\  ph )  ->  x  =  X )  <->  A. x  e.  V  ( ph  ->  x  =  X ) )
93, 4, 83bitri 286 1  |-  ( { x  e.  V  |  ph }  C_  { X } 
<-> 
A. x  e.  V  ( ph  ->  x  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916    C_ wss 3574   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-in 3581  df-ss 3588  df-sn 4178
This theorem is referenced by:  suppmptcfin  42160  linc1  42214
  Copyright terms: Public domain W3C validator