Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppmptcfin Structured version   Visualization version   Unicode version

Theorem suppmptcfin 42160
Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
suppmptcfin.b  |-  B  =  ( Base `  M
)
suppmptcfin.r  |-  R  =  (Scalar `  M )
suppmptcfin.0  |-  .0.  =  ( 0g `  R )
suppmptcfin.1  |-  .1.  =  ( 1r `  R )
suppmptcfin.f  |-  F  =  ( x  e.  V  |->  if ( x  =  X ,  .1.  ,  .0.  ) )
Assertion
Ref Expression
suppmptcfin  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  ( F supp  .0.  )  e.  Fin )
Distinct variable groups:    x, B    x, F    x, M    x, V    x, X    x,  .1.    x,  .0.
Allowed substitution hint:    R( x)

Proof of Theorem suppmptcfin
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 suppmptcfin.f . . . 4  |-  F  =  ( x  e.  V  |->  if ( x  =  X ,  .1.  ,  .0.  ) )
2 eqeq1 2626 . . . . . 6  |-  ( x  =  v  ->  (
x  =  X  <->  v  =  X ) )
32ifbid 4108 . . . . 5  |-  ( x  =  v  ->  if ( x  =  X ,  .1.  ,  .0.  )  =  if ( v  =  X ,  .1.  ,  .0.  ) )
43cbvmptv 4750 . . . 4  |-  ( x  e.  V  |->  if ( x  =  X ,  .1.  ,  .0.  ) )  =  ( v  e.  V  |->  if ( v  =  X ,  .1.  ,  .0.  ) )
51, 4eqtri 2644 . . 3  |-  F  =  ( v  e.  V  |->  if ( v  =  X ,  .1.  ,  .0.  ) )
6 simp2 1062 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  V  e.  ~P B )
7 suppmptcfin.0 . . . . 5  |-  .0.  =  ( 0g `  R )
8 fvex 6201 . . . . 5  |-  ( 0g
`  R )  e. 
_V
97, 8eqeltri 2697 . . . 4  |-  .0.  e.  _V
109a1i 11 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  .0.  e.  _V )
11 suppmptcfin.1 . . . . . 6  |-  .1.  =  ( 1r `  R )
12 fvex 6201 . . . . . 6  |-  ( 1r
`  R )  e. 
_V
1311, 12eqeltri 2697 . . . . 5  |-  .1.  e.  _V
1413a1i 11 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V
)  /\  v  e.  V )  ->  .1.  e.  _V )
159a1i 11 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V
)  /\  v  e.  V )  ->  .0.  e.  _V )
1614, 15ifcld 4131 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V
)  /\  v  e.  V )  ->  if ( v  =  X ,  .1.  ,  .0.  )  e.  _V )
175, 6, 10, 16mptsuppd 7318 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  ( F supp  .0.  )  =  {
v  e.  V  |  if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  } )
18 snfi 8038 . . 3  |-  { X }  e.  Fin
19 2a1 28 . . . . . 6  |-  ( v  =  X  ->  (
( ( M  e. 
LMod  /\  V  e.  ~P B  /\  X  e.  V
)  /\  v  e.  V )  ->  ( if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  ->  v  =  X ) ) )
20 iffalse 4095 . . . . . . . . . 10  |-  ( -.  v  =  X  ->  if ( v  =  X ,  .1.  ,  .0.  )  =  .0.  )
2120adantr 481 . . . . . . . . 9  |-  ( ( -.  v  =  X  /\  ( ( M  e.  LMod  /\  V  e. 
~P B  /\  X  e.  V )  /\  v  e.  V ) )  ->  if ( v  =  X ,  .1.  ,  .0.  )  =  .0.  )
2221neeq1d 2853 . . . . . . . 8  |-  ( ( -.  v  =  X  /\  ( ( M  e.  LMod  /\  V  e. 
~P B  /\  X  e.  V )  /\  v  e.  V ) )  -> 
( if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  <->  .0.  =/=  .0.  ) )
23 eqid 2622 . . . . . . . . 9  |-  .0.  =  .0.
24 eqneqall 2805 . . . . . . . . 9  |-  (  .0.  =  .0.  ->  (  .0.  =/=  .0.  ->  v  =  X ) )
2523, 24ax-mp 5 . . . . . . . 8  |-  (  .0. 
=/=  .0.  ->  v  =  X )
2622, 25syl6bi 243 . . . . . . 7  |-  ( ( -.  v  =  X  /\  ( ( M  e.  LMod  /\  V  e. 
~P B  /\  X  e.  V )  /\  v  e.  V ) )  -> 
( if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  ->  v  =  X ) )
2726ex 450 . . . . . 6  |-  ( -.  v  =  X  -> 
( ( ( M  e.  LMod  /\  V  e. 
~P B  /\  X  e.  V )  /\  v  e.  V )  ->  ( if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  ->  v  =  X ) ) )
2819, 27pm2.61i 176 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V
)  /\  v  e.  V )  ->  ( if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  ->  v  =  X ) )
2928ralrimiva 2966 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  A. v  e.  V  ( if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  ->  v  =  X ) )
30 rabsssn 4215 . . . 4  |-  ( { v  e.  V  |  if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  }  C_  { X }  <->  A. v  e.  V  ( if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  ->  v  =  X ) )
3129, 30sylibr 224 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  { v  e.  V  |  if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  }  C_  { X } )
32 ssfi 8180 . . 3  |-  ( ( { X }  e.  Fin  /\  { v  e.  V  |  if ( v  =  X ,  .1.  ,  .0.  )  =/= 
.0.  }  C_  { X } )  ->  { v  e.  V  |  if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  }  e.  Fin )
3318, 31, 32sylancr 695 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  { v  e.  V  |  if ( v  =  X ,  .1.  ,  .0.  )  =/=  .0.  }  e.  Fin )
3417, 33eqeltrd 2701 1  |-  ( ( M  e.  LMod  /\  V  e.  ~P B  /\  X  e.  V )  ->  ( F supp  .0.  )  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ifcif 4086   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   1rcur 18501   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  mptcfsupp  42161
  Copyright terms: Public domain W3C validator