MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifsni Structured version   Visualization version   Unicode version

Theorem raldifsni 4324
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
raldifsni  |-  ( A. x  e.  ( A  \  { B } )  -.  ph  <->  A. x  e.  A  ( ph  ->  x  =  B ) )

Proof of Theorem raldifsni
StepHypRef Expression
1 eldifsn 4317 . . . 4  |-  ( x  e.  ( A  \  { B } )  <->  ( x  e.  A  /\  x  =/=  B ) )
21imbi1i 339 . . 3  |-  ( ( x  e.  ( A 
\  { B }
)  ->  -.  ph )  <->  ( ( x  e.  A  /\  x  =/=  B
)  ->  -.  ph )
)
3 impexp 462 . . 3  |-  ( ( ( x  e.  A  /\  x  =/=  B
)  ->  -.  ph )  <->  ( x  e.  A  -> 
( x  =/=  B  ->  -.  ph ) ) )
4 df-ne 2795 . . . . . 6  |-  ( x  =/=  B  <->  -.  x  =  B )
54imbi1i 339 . . . . 5  |-  ( ( x  =/=  B  ->  -.  ph )  <->  ( -.  x  =  B  ->  -. 
ph ) )
6 con34b 306 . . . . 5  |-  ( (
ph  ->  x  =  B )  <->  ( -.  x  =  B  ->  -.  ph ) )
75, 6bitr4i 267 . . . 4  |-  ( ( x  =/=  B  ->  -.  ph )  <->  ( ph  ->  x  =  B ) )
87imbi2i 326 . . 3  |-  ( ( x  e.  A  -> 
( x  =/=  B  ->  -.  ph ) )  <-> 
( x  e.  A  ->  ( ph  ->  x  =  B ) ) )
92, 3, 83bitri 286 . 2  |-  ( ( x  e.  ( A 
\  { B }
)  ->  -.  ph )  <->  ( x  e.  A  -> 
( ph  ->  x  =  B ) ) )
109ralbii2 2978 1  |-  ( A. x  e.  ( A  \  { B } )  -.  ph  <->  A. x  e.  A  ( ph  ->  x  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-sn 4178
This theorem is referenced by:  islindf4  20177  snlindsntor  42260
  Copyright terms: Public domain W3C validator