MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifsn Structured version   Visualization version   Unicode version

Theorem rexdifsn 4323
Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
Assertion
Ref Expression
rexdifsn  |-  ( E. x  e.  ( A 
\  { B }
) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )

Proof of Theorem rexdifsn
StepHypRef Expression
1 eldifsn 4317 . . . 4  |-  ( x  e.  ( A  \  { B } )  <->  ( x  e.  A  /\  x  =/=  B ) )
21anbi1i 731 . . 3  |-  ( ( x  e.  ( A 
\  { B }
)  /\  ph )  <->  ( (
x  e.  A  /\  x  =/=  B )  /\  ph ) )
3 anass 681 . . 3  |-  ( ( ( x  e.  A  /\  x  =/=  B
)  /\  ph )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  ph ) ) )
42, 3bitri 264 . 2  |-  ( ( x  e.  ( A 
\  { B }
)  /\  ph )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  ph ) ) )
54rexbii2 3039 1  |-  ( E. x  e.  ( A 
\  { B }
) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rex 2918  df-v 3202  df-dif 3577  df-sn 4178
This theorem is referenced by:  symgfix2  17836  usgr2pth0  26661  wspniunwspnon  26819  dihatexv  36627  lcfl8b  36793
  Copyright terms: Public domain W3C validator