MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrab2 Structured version   Visualization version   Unicode version

Theorem ralrab2 3372
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralrab2  |-  ( A. x  e.  { y  e.  A  |  ph } ps 
<-> 
A. y  e.  A  ( ph  ->  ch )
)
Distinct variable groups:    x, y    x, A    ch, x    ph, x    ps, y
Allowed substitution hints:    ph( y)    ps( x)    ch( y)    A( y)

Proof of Theorem ralrab2
StepHypRef Expression
1 df-rab 2921 . . 3  |-  { y  e.  A  |  ph }  =  { y  |  ( y  e.  A  /\  ph ) }
21raleqi 3142 . 2  |-  ( A. x  e.  { y  e.  A  |  ph } ps 
<-> 
A. x  e.  {
y  |  ( y  e.  A  /\  ph ) } ps )
3 ralab2.1 . . 3  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
43ralab2 3371 . 2  |-  ( A. x  e.  { y  |  ( y  e.  A  /\  ph ) } ps  <->  A. y ( ( y  e.  A  /\  ph )  ->  ch )
)
5 impexp 462 . . . 4  |-  ( ( ( y  e.  A  /\  ph )  ->  ch ) 
<->  ( y  e.  A  ->  ( ph  ->  ch ) ) )
65albii 1747 . . 3  |-  ( A. y ( ( y  e.  A  /\  ph )  ->  ch )  <->  A. y
( y  e.  A  ->  ( ph  ->  ch ) ) )
7 df-ral 2917 . . 3  |-  ( A. y  e.  A  ( ph  ->  ch )  <->  A. y
( y  e.  A  ->  ( ph  ->  ch ) ) )
86, 7bitr4i 267 . 2  |-  ( A. y ( ( y  e.  A  /\  ph )  ->  ch )  <->  A. y  e.  A  ( ph  ->  ch ) )
92, 4, 83bitri 286 1  |-  ( A. x  e.  { y  e.  A  |  ph } ps 
<-> 
A. y  e.  A  ( ph  ->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921
This theorem is referenced by:  efgsf  18142  ghmcnp  21918  nmogelb  22520  pntlem3  25298  sstotbnd2  33573
  Copyright terms: Public domain W3C validator