MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglem1 Structured version   Visualization version   Unicode version

Theorem rdglem1 7511
Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.)
Assertion
Ref Expression
rdglem1  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) }
Distinct variable groups:    x, y,
f, g, z, G   
y, w, G, z, g

Proof of Theorem rdglem1
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem3 7474 . 2  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. v  e.  z  ( g `  v )  =  ( G `  ( g  |`  v ) ) ) }
3 fveq2 6191 . . . . . . 7  |-  ( v  =  w  ->  (
g `  v )  =  ( g `  w ) )
4 reseq2 5391 . . . . . . . 8  |-  ( v  =  w  ->  (
g  |`  v )  =  ( g  |`  w
) )
54fveq2d 6195 . . . . . . 7  |-  ( v  =  w  ->  ( G `  ( g  |`  v ) )  =  ( G `  (
g  |`  w ) ) )
63, 5eqeq12d 2637 . . . . . 6  |-  ( v  =  w  ->  (
( g `  v
)  =  ( G `
 ( g  |`  v ) )  <->  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
76cbvralv 3171 . . . . 5  |-  ( A. v  e.  z  (
g `  v )  =  ( G `  ( g  |`  v
) )  <->  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) )
87anbi2i 730 . . . 4  |-  ( ( g  Fn  z  /\  A. v  e.  z  ( g `  v )  =  ( G `  ( g  |`  v
) ) )  <->  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
98rexbii 3041 . . 3  |-  ( E. z  e.  On  (
g  Fn  z  /\  A. v  e.  z  ( g `  v )  =  ( G `  ( g  |`  v
) ) )  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
109abbii 2739 . 2  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. v  e.  z  ( g `  v )  =  ( G `  ( g  |`  v ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) }
112, 10eqtri 2644 1  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   {cab 2608   A.wral 2912   E.wrex 2913    |` cres 5116   Oncon0 5723    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  rdgseg  7518
  Copyright terms: Public domain W3C validator