![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version Unicode version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5128 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ineq2d 3814 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-res 5126 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-res 5126 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3eqtr4g 2681 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-opab 4713 df-xp 5120 df-res 5126 |
This theorem is referenced by: reseq2i 5393 reseq2d 5396 resabs1 5427 resima2 5432 resima2OLD 5433 imaeq2 5462 resdisj 5563 fressnfv 6427 tfrlem1 7472 tfrlem9 7481 tfrlem11 7484 tfrlem12 7485 tfr2b 7492 tz7.44-1 7502 tz7.44-2 7503 tz7.44-3 7504 rdglem1 7511 fnfi 8238 fseqenlem1 8847 rtrclreclem4 13801 psgnprfval1 17942 gsumzaddlem 18321 gsum2dlem2 18370 znunithash 19913 islinds 20148 lmbr2 21063 lmff 21105 kgencn2 21360 ptcmpfi 21616 tsmsgsum 21942 tsmsres 21947 tsmsf1o 21948 tsmsxplem1 21956 tsmsxp 21958 ustval 22006 xrge0gsumle 22636 xrge0tsms 22637 lmmbr2 23057 lmcau 23111 limcun 23659 jensen 24715 wilthlem2 24795 wilthlem3 24796 hhssnvt 28122 hhsssh 28126 foresf1o 29343 gsumle 29779 xrge0tsmsd 29785 esumsnf 30126 subfacp1lem3 31164 subfacp1lem5 31166 erdszelem1 31173 erdsze 31184 erdsze2lem2 31186 cvmscbv 31240 cvmshmeo 31253 cvmsss2 31256 dfpo2 31645 eldm3 31651 dfrdg2 31701 mbfresfi 33456 mzpcompact2lem 37314 seff 38508 wessf1ornlem 39371 fouriersw 40448 sge0tsms 40597 sge0f1o 40599 sge0sup 40608 meadjuni 40674 ismeannd 40684 psmeasurelem 40687 psmeasure 40688 omeunile 40719 isomennd 40745 hoidmvlelem3 40811 |
Copyright terms: Public domain | W3C validator |