MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsubgr Structured version   Visualization version   Unicode version

Theorem relsubgr 26161
Description: The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
relsubgr  |-  Rel SubGraph

Proof of Theorem relsubgr
Dummy variables  g 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subgr 26160 . 2  |- SubGraph  =  { <. s ,  g >.  |  ( (Vtx `  s )  C_  (Vtx `  g )  /\  (iEdg `  s )  =  ( (iEdg `  g )  |` 
dom  (iEdg `  s )
)  /\  (Edg `  s
)  C_  ~P (Vtx `  s ) ) }
21relopabi 5245 1  |-  Rel SubGraph
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 1037    = wceq 1483    C_ wss 3574   ~Pcpw 4158   dom cdm 5114    |` cres 5116   Rel wrel 5119   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-subgr 26160
This theorem is referenced by:  subgrv  26162
  Copyright terms: Public domain W3C validator