HomeHome Metamath Proof Explorer
Theorem List (p. 262 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 26101-26200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremumgr2edg 26101* If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 11-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  E. x  e.  dom  I E. y  e.  dom  I ( x  =/=  y  /\  N  e.  ( I `  x )  /\  N  e.  ( I `  y ) ) )
 
Theoremusgr2edg 26102* If a vertex is adjacent to two different vertices in a simple graph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 11-Feb-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. USGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  E. x  e.  dom  I E. y  e.  dom  I ( x  =/=  y  /\  N  e.  ( I `  x )  /\  N  e.  ( I `  y ) ) )
 
Theoremumgr2edg1 26103* If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  -.  E! x  e.  dom  I  N  e.  ( I `  x ) )
 
Theoremusgr2edg1 26104* If a vertex is adjacent to two different vertices in a simple graph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 17-Oct-2020.) (Proof shortened by AV, 8-Jun-2021.)
 |-  I  =  (iEdg `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. USGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  -.  E! x  e.  dom  I  N  e.  ( I `  x ) )
 
Theoremumgrvad2edg 26105* If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 26102. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
 |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  E. x  e.  E  E. y  e.  E  ( x  =/=  y  /\  N  e.  x  /\  N  e.  y
 ) )
 
Theoremumgr2edgneu 26106* If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 26104. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.)
 |-  E  =  (Edg `  G )   =>    |-  ( ( ( G  e. UMGraph  /\  A  =/=  B )  /\  ( { N ,  A }  e.  E  /\  { B ,  N }  e.  E )
 )  ->  -.  E! x  e.  E  N  e.  x )
 
Theoremusgrsizedg 26107 In a simple graph, the size of the edge function is the number of the edges of the graph. (Contributed by AV, 4-Jan-2020.) (Revised by AV, 7-Jun-2021.)
 |-  ( G  e. USGraph  ->  ( # `
  (iEdg `  G ) )  =  ( # `
  (Edg `  G ) ) )
 
Theoremusgredg3 26108* The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USGraph  /\  X  e.  dom  E )  ->  E. x  e.  V  E. y  e.  V  ( x  =/=  y  /\  ( E `  X )  =  { x ,  y } ) )
 
Theoremusgredg4 26109* For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USGraph  /\  X  e.  dom  E  /\  Y  e.  ( E `
  X ) ) 
 ->  E. y  e.  V  ( E `  X )  =  { Y ,  y } )
 
Theoremusgredgreu 26110* For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USGraph  /\  X  e.  dom  E  /\  Y  e.  ( E `
  X ) ) 
 ->  E! y  e.  V  ( E `  X )  =  { Y ,  y } )
 
Theoremusgredg2vtx 26111* For a vertex incident to an edge there is another vertex incident to the edge in a simple graph. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 5-Dec-2020.)
 |-  ( ( G  e. USGraph  /\  E  e.  (Edg `  G )  /\  Y  e.  E )  ->  E. y  e.  (Vtx `  G ) E  =  { Y ,  y } )
 
Theoremuspgredg2vtxeu 26112* For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 6-Dec-2020.)
 |-  ( ( G  e. USPGraph  /\  E  e.  (Edg `  G )  /\  Y  e.  E )  ->  E! y  e.  (Vtx `  G ) E  =  { Y ,  y } )
 
Theoremusgredg2vtxeu 26113* For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple graph. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 6-Dec-2020.)
 |-  ( ( G  e. USGraph  /\  E  e.  (Edg `  G )  /\  Y  e.  E )  ->  E! y  e.  (Vtx `  G ) E  =  { Y ,  y } )
 
Theoremusgredg2vtxeuALT 26114* Alternate proof of usgredg2vtxeu 26113, using edgiedgb 25947, the general translation from  (iEdg `  G ) to  (Edg `  G ). (Contributed by AV, 18-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( G  e. USGraph  /\  E  e.  (Edg `  G )  /\  Y  e.  E )  ->  E! y  e.  (Vtx `  G ) E  =  { Y ,  y } )
 
Theoremuspgredg2vlem 26115* Lemma for uspgredg2v 26116. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   &    |-  A  =  {
 e  e.  E  |  N  e.  e }   =>    |-  (
 ( G  e. USPGraph  /\  Y  e.  A )  ->  ( iota_
 z  e.  V  Y  =  { N ,  z } )  e.  V )
 
Theoremuspgredg2v 26116* In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   &    |-  A  =  {
 e  e.  E  |  N  e.  e }   &    |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  y  =  { N ,  z } ) )   =>    |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  F : A -1-1-> V )
 
Theoremusgredg2vlem1 26117* Lemma 1 for usgredg2v 26119. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }   =>    |-  ( ( G  e. USGraph  /\  Y  e.  A )  ->  ( iota_ z  e.  V  ( E `  Y )  =  {
 z ,  N }
 )  e.  V )
 
Theoremusgredg2vlem2 26118* Lemma 2 for usgredg2v 26119. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }   =>    |-  ( ( G  e. USGraph  /\  Y  e.  A )  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  ->  ( E `  Y )  =  { I ,  N } ) )
 
Theoremusgredg2v 26119* In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }   &    |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } ) )   =>    |-  ( ( G  e. USGraph  /\  N  e.  V ) 
 ->  F : A -1-1-> V )
 
Theoremusgriedgleord 26120* Alternate version of usgredgleord 26125, not using the notation  (Edg `  G
). In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( ( G  e. USGraph  /\  N  e.  V ) 
 ->  ( # `  { x  e.  dom  E  |  N  e.  ( E `  x ) } )  <_  ( # `
  V ) )
 
Theoremushgredgedg 26121* In a simple hypergraph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 11-Dec-2020.)
 |-  E  =  (Edg `  G )   &    |-  I  =  (iEdg `  G )   &    |-  V  =  (Vtx `  G )   &    |-  A  =  {
 i  e.  dom  I  |  N  e.  ( I `  i ) }   &    |-  B  =  { e  e.  E  |  N  e.  e }   &    |-  F  =  ( x  e.  A  |->  ( I `
  x ) )   =>    |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F : A -1-1-onto-> B )
 
Theoremusgredgedg 26122* In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by by AV, 18-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.)
 |-  E  =  (Edg `  G )   &    |-  I  =  (iEdg `  G )   &    |-  V  =  (Vtx `  G )   &    |-  A  =  {
 i  e.  dom  I  |  N  e.  ( I `  i ) }   &    |-  B  =  { e  e.  E  |  N  e.  e }   &    |-  F  =  ( x  e.  A  |->  ( I `
  x ) )   =>    |-  ( ( G  e. USGraph  /\  N  e.  V ) 
 ->  F : A -1-1-onto-> B )
 
Theoremushgredgedgloop 26123* In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex and the set of loops at this vertex. (Contributed by AV, 11-Dec-2020.)
 |-  E  =  (Edg `  G )   &    |-  I  =  (iEdg `  G )   &    |-  V  =  (Vtx `  G )   &    |-  A  =  {
 i  e.  dom  I  |  ( I `  i
 )  =  { N } }   &    |-  B  =  {
 e  e.  E  |  e  =  { N } }   &    |-  F  =  ( x  e.  A  |->  ( I `  x ) )   =>    |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F : A -1-1-onto-> B )
 
Theoremuspgredgleord 26124* In a simple pseudograph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  ( # `  { e  e.  E  |  N  e.  e } )  <_  ( # `
  V ) )
 
Theoremusgredgleord 26125* In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) (Proof shortened by AV, 6-Dec-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. USGraph  /\  N  e.  V ) 
 ->  ( # `  { e  e.  E  |  N  e.  e } )  <_  ( # `
  V ) )
 
TheoremusgredgleordALT 26126* Alternate proof for usgredgleord 26125 based on usgriedgleord 26120. In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) (Proof shortened by AV, 5-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. USGraph  /\  N  e.  V ) 
 ->  ( # `  { e  e.  E  |  N  e.  e } )  <_  ( # `
  V ) )
 
Theoremusgrstrrepe 26127* Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring  ( ph  ->  G Struct  X ), it would be sufficient to require  ( ph  ->  Fun  ( G  \  { (/)
} ) ) and  ( ph  ->  G  e.  _V ). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.)
 |-  V  =  ( Base `  G )   &    |-  I  =  (.ef `  ndx )   &    |-  ( ph  ->  G Struct  X )   &    |-  ( ph  ->  (
 Base `  ndx )  e. 
 dom  G )   &    |-  ( ph  ->  E  e.  W )   &    |-  ( ph  ->  E : dom  E
 -1-1-> { x  e.  ~P V  |  ( # `  x )  =  2 }
 )   =>    |-  ( ph  ->  ( G sSet  <. I ,  E >. )  e. USGraph  )
 
16.2.6  Examples for graphs
 
Theoremusgr0e 26128 The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
 |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  (iEdg `  G )  =  (/) )   =>    |-  ( ph  ->  G  e. USGraph  )
 
Theoremusgr0vb 26129 The null graph, with no vertices, is a simple graph iff the edge function is empty. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Revised by AV, 16-Oct-2020.)
 |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. USGraph  <->  (iEdg `  G )  =  (/) ) )
 
Theoremuhgr0v0e 26130 The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UHGraph  /\  V  =  (/) )  ->  E  =  (/) )
 
Theoremuhgr0vsize0 26131 The size of a hypergraph with no vertices (the null graph) is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 7-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (Edg `  G )   =>    |-  ( ( G  e. UHGraph  /\  ( # `  V )  =  0 )  ->  ( # `  E )  =  0 )
 
Theoremuhgr0edgfi 26132 A graph of order 0 (i.e. with 0 vertices) has a finite set of edges. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 8-Jun-2021.)
 |-  ( ( G  e. UHGraph  /\  ( # `  (Vtx `  G ) )  =  0 )  ->  (Edg `  G )  e.  Fin )
 
Theoremusgr0v 26133 The null graph, with no vertices, is a simple graph. (Contributed by AV, 1-Nov-2020.)
 |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/)  /\  (iEdg `  G )  =  (/) )  ->  G  e. USGraph  )
 
Theoremuhgr0vusgr 26134 The null graph, with no vertices, represented by a hypergraph, is a simple graph. (Contributed by AV, 5-Dec-2020.)
 |-  ( ( G  e. UHGraph  /\  (Vtx `  G )  =  (/) )  ->  G  e. USGraph  )
 
Theoremusgr0 26135 The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020.)
 |-  (/)  e. USGraph
 
Theoremuspgr1e 26136 A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )   =>    |-  ( ph  ->  G  e. USPGraph  )
 
Theoremusgr1e 26137 A simple graph with one edge (with additional assumption that  B  =/=  C since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  G  e. USGraph  )
 
Theoremusgr0eop 26138 The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
 |-  ( V  e.  W  -> 
 <. V ,  (/) >.  e. USGraph  )
 
Theoremuspgr1eop 26139 A simple pseudograph with (at least) two vertices and one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
 |-  ( ( ( V  e.  W  /\  A  e.  X )  /\  ( B  e.  V  /\  C  e.  V )
 )  ->  <. V ,  { <. A ,  { B ,  C } >. } >.  e. USPGraph  )
 
Theoremuspgr1ewop 26140 A simple pseudograph with (at least) two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
 |-  ( ( V  e.  W  /\  A  e.  V  /\  B  e.  V ) 
 ->  <. V ,  <" { A ,  B } "> >.  e. USPGraph  )
 
Theoremuspgr1v1eop 26141 A simple pseudograph with (at least) one vertex and one edge (a loop). (Contributed by AV, 5-Dec-2020.)
 |-  ( ( V  e.  W  /\  A  e.  X  /\  B  e.  V ) 
 ->  <. V ,  { <. A ,  { B } >. } >.  e. USPGraph  )
 
Theoremusgr1eop 26142 A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 18-Oct-2020.)
 |-  ( ( ( V  e.  W  /\  A  e.  X )  /\  ( B  e.  V  /\  C  e.  V )
 )  ->  ( B  =/=  C  ->  <. V ,  { <. A ,  { B ,  C } >. } >.  e. USGraph  ) )
 
Theoremuspgr2v1e2w 26143 A simple pseudograph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
 |-  ( ( A  e.  X  /\  B  e.  Y )  ->  <. { A ,  B } ,  <" { A ,  B } "> >.  e. USPGraph  )
 
Theoremusgr2v1e2w 26144 A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
 |-  ( ( A  e.  X  /\  B  e.  Y  /\  A  =/=  B ) 
 ->  <. { A ,  B } ,  <" { A ,  B } "> >.  e. USGraph  )
 
Theoremedg0usgr 26145 A class without edges is a simple graph. Since  ran 
F  =  (/) does not generally imply  Fun  F, but  Fun  (iEdg `  G ) is required for  G to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.)
 |-  ( ( G  e.  W  /\  (Edg `  G )  =  (/)  /\  Fun  (iEdg `  G ) ) 
 ->  G  e. USGraph  )
 
Theoremlfuhgr1v0e 26146* A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  E  =  { x  e.  ~P V  |  2  <_  ( # `  x ) }   =>    |-  ( ( G  e. UHGraph  /\  ( # `  V )  =  1  /\  I : dom  I --> E ) 
 ->  (Edg `  G )  =  (/) )
 
Theoremusgr1vr 26147 A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 2-Apr-2021.)
 |-  ( ( A  e.  X  /\  (Vtx `  G )  =  { A } )  ->  ( G  e. USGraph  ->  (iEdg `  G )  =  (/) ) )
 
Theoremusgr1v 26148 A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.)
 |-  ( ( G  e.  W  /\  (Vtx `  G )  =  { A } )  ->  ( G  e. USGraph 
 <->  (iEdg `  G )  =  (/) ) )
 
Theoremusgr1v0edg 26149 A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.)
 |-  ( ( G  e.  W  /\  (Vtx `  G )  =  { A }  /\  Fun  (iEdg `  G ) )  ->  ( G  e. USGraph 
 <->  (Edg `  G )  =  (/) ) )
 
Theoremusgrexmpldifpr 26150 Lemma for usgrexmpledg 26154: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
 |-  ( ( { 0 ,  1 }  =/=  { 1 ,  2 } 
 /\  { 0 ,  1 }  =/=  { 2 ,  0 }  /\  { 0 ,  1 }  =/=  { 0 ,  3 } )  /\  ( { 1 ,  2 }  =/=  { 2 ,  0 }  /\  { 1 ,  2 }  =/=  { 0 ,  3 }  /\  {
 2 ,  0 }  =/=  { 0 ,  3 } ) )
 
Theoremusgrexmplef 26151* Lemma for usgrexmpl 26155. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
 |-  V  =  ( 0
 ... 4 )   &    |-  E  =  <" { 0 ,  1 }  {
 1 ,  2 }  { 2 ,  0 }  { 0 ,  3 } ">   =>    |-  E : dom  E
 -1-1-> { e  e.  ~P V  |  ( # `  e
 )  =  2 }
 
Theoremusgrexmpllem 26152 Lemma for usgrexmpl 26155. (Contributed by AV, 21-Oct-2020.)
 |-  V  =  ( 0
 ... 4 )   &    |-  E  =  <" { 0 ,  1 }  {
 1 ,  2 }  { 2 ,  0 }  { 0 ,  3 } ">   &    |-  G  =  <. V ,  E >.   =>    |-  ( (Vtx `  G )  =  V  /\  (iEdg `  G )  =  E )
 
Theoremusgrexmplvtx 26153 The vertices  0 ,  1 ,  2 ,  3 ,  4 of the graph  G  =  <. V ,  E >.. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.)
 |-  V  =  ( 0
 ... 4 )   &    |-  E  =  <" { 0 ,  1 }  {
 1 ,  2 }  { 2 ,  0 }  { 0 ,  3 } ">   &    |-  G  =  <. V ,  E >.   =>    |-  (Vtx `  G )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
 
Theoremusgrexmpledg 26154 The edges  { 0 ,  1 } ,  {
1 ,  2 } ,  { 2 ,  0 } ,  {
0 ,  3 } of the graph  G  =  <. V ,  E >.. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.)
 |-  V  =  ( 0
 ... 4 )   &    |-  E  =  <" { 0 ,  1 }  {
 1 ,  2 }  { 2 ,  0 }  { 0 ,  3 } ">   &    |-  G  =  <. V ,  E >.   =>    |-  (Edg `  G )  =  ( { { 0 ,  1 } ,  { 1 ,  2 } }  u.  { { 2 ,  0 } ,  { 0 ,  3 } }
 )
 
Theoremusgrexmpl 26155  G is a simple graph of five vertices  0 ,  1 ,  2 ,  3 ,  4, with edges  { 0 ,  1 } ,  {
1 ,  2 } ,  { 2 ,  0 } ,  {
0 ,  3 }. (Contributed by Alexander van der Vekens, 15-Aug-2017.) (Revised by AV, 21-Oct-2020.)
 |-  V  =  ( 0
 ... 4 )   &    |-  E  =  <" { 0 ,  1 }  {
 1 ,  2 }  { 2 ,  0 }  { 0 ,  3 } ">   &    |-  G  =  <. V ,  E >.   =>    |-  G  e. USGraph
 
Theoremgriedg0prc 26156* The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.)
 |-  U  =  { <. v ,  e >.  |  e : (/) --> (/) }   =>    |-  U  e/  _V
 
Theoremgriedg0ssusgr 26157* The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.)
 |-  U  =  { <. v ,  e >.  |  e : (/) --> (/) }   =>    |-  U  C_ USGraph
 
Theoremusgrprc 26158 The class of simple graphs is a proper class (and therefore, because of prcssprc 4806, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.)
 |- USGraph  e/ 
 _V
 
16.2.7  Subgraphs
 
Syntaxcsubgr 26159 Extend class notation with subgraphs.
 class SubGraph
 
Definitiondf-subgr 26160* Define the class of the subgraph relation. A class  s is a subgraph of a class  g (the supergraph of 
s) if its vertices are also vertices of  g, and its edges are also edges of  g, connecting vertices of  s only (see section I.1 in [Bollobas] p. 2 or section 1.1 in [Diestel] p. 4). The second condition is ensured by the requirement that the edge function of  s is a restriction of the edge function of  g having only vertices of  s in its range. Note that the domains of the edge functions of the subgraph and the supergraph should be compatible. (Contributed by AV, 16-Nov-2020.)
 |- SubGraph  =  { <. s ,  g >.  |  ( (Vtx `  s )  C_  (Vtx `  g )  /\  (iEdg `  s )  =  (
 (iEdg `  g )  |` 
 dom  (iEdg `  s )
 )  /\  (Edg `  s
 )  C_  ~P (Vtx `  s ) ) }
 
Theoremrelsubgr 26161 The class of the subgraph relation is a relation. (Contributed by AV, 16-Nov-2020.)
 |- 
 Rel SubGraph
 
Theoremsubgrv 26162 If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.)
 |-  ( S SubGraph  G  ->  ( S  e.  _V  /\  G  e.  _V )
 )
 
Theoremissubgr 26163 The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  A  =  (Vtx `  G )   &    |-  I  =  (iEdg `  S )   &    |-  B  =  (iEdg `  G )   &    |-  E  =  (Edg `  S )   =>    |-  ( ( G  e.  W  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  =  ( B  |`  dom  I ) 
 /\  E  C_  ~P V ) ) )
 
Theoremissubgr2 26164 The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  A  =  (Vtx `  G )   &    |-  I  =  (iEdg `  S )   &    |-  B  =  (iEdg `  G )   &    |-  E  =  (Edg `  S )   =>    |-  ( ( G  e.  W  /\  Fun  B  /\  S  e.  U )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  C_  B  /\  E  C_  ~P V ) ) )
 
Theoremsubgrprop 26165 The properties of a subgraph. (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  A  =  (Vtx `  G )   &    |-  I  =  (iEdg `  S )   &    |-  B  =  (iEdg `  G )   &    |-  E  =  (Edg `  S )   =>    |-  ( S SubGraph  G  ->  ( V  C_  A  /\  I  =  ( B  |` 
 dom  I )  /\  E  C_  ~P V ) )
 
Theoremsubgrprop2 26166 The properties of a subgraph: If 
S is a subgraph of  G, its vertices are also vertices of  G, and its edges are also edges of  G, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  A  =  (Vtx `  G )   &    |-  I  =  (iEdg `  S )   &    |-  B  =  (iEdg `  G )   &    |-  E  =  (Edg `  S )   =>    |-  ( S SubGraph  G  ->  ( V  C_  A  /\  I  C_  B  /\  E  C_ 
 ~P V ) )
 
Theoremuhgrissubgr 26167 The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  A  =  (Vtx `  G )   &    |-  I  =  (iEdg `  S )   &    |-  B  =  (iEdg `  G )   =>    |-  ( ( G  e.  W  /\  Fun  B  /\  S  e. UHGraph  )  ->  ( S SubGraph  G  <->  ( V  C_  A  /\  I  C_  B ) ) )
 
Theoremsubgrprop3 26168 The properties of a subgraph: If 
S is a subgraph of  G, its vertices are also vertices of  G, and its edges are also edges of  G. (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  A  =  (Vtx `  G )   &    |-  E  =  (Edg `  S )   &    |-  B  =  (Edg `  G )   =>    |-  ( S SubGraph  G  ->  ( V  C_  A  /\  E  C_  B ) )
 
Theoremegrsubgr 26169 An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.)
 |-  ( ( ( G  e.  W  /\  S  e.  U )  /\  (Vtx `  S )  C_  (Vtx `  G )  /\  ( Fun  (iEdg `  S )  /\  (Edg `  S )  =  (/) ) )  ->  S SubGraph  G )
 
Theorem0grsubgr 26170 The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
 |-  ( G  e.  W  -> 
 (/) SubGraph  G )
 
Theorem0uhgrsubgr 26171 The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
 |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  S SubGraph  G )
 
Theoremuhgrsubgrself 26172 A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
 |-  ( G  e. UHGraph  ->  G SubGraph  G )
 
Theoremsubgrfun 26173 The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.)
 |-  ( ( Fun  (iEdg `  G )  /\  S SubGraph  G )  ->  Fun  (iEdg `  S ) )
 
Theoremsubgruhgrfun 26174 The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 20-Nov-2020.)
 |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S ) )
 
Theoremsubgreldmiedg 26175 An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.)
 |-  ( ( S SubGraph  G  /\  X  e.  dom  (iEdg `  S ) )  ->  X  e.  dom  (iEdg `  G ) )
 
Theoremsubgruhgredgd 26176 An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020.) (Revised by AV, 21-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  I  =  (iEdg `  S )   &    |-  ( ph  ->  G  e. UHGraph  )   &    |-  ( ph  ->  S SubGraph  G )   &    |-  ( ph  ->  X  e.  dom  I )   =>    |-  ( ph  ->  ( I `  X )  e.  ( ~P V  \  { (/) } )
 )
 
Theoremsubumgredg2 26177* An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.)
 |-  V  =  (Vtx `  S )   &    |-  I  =  (iEdg `  S )   =>    |-  ( ( S SubGraph  G  /\  G  e. UMGraph  /\  X  e.  dom 
 I )  ->  ( I `  X )  e. 
 { e  e.  ~P V  |  ( # `  e
 )  =  2 } )
 
Theoremsubuhgr 26178 A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
 |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  S  e. UHGraph  )
 
Theoremsubupgr 26179 A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
 |-  ( ( G  e. UPGraph  /\  S SubGraph  G )  ->  S  e. UPGraph  )
 
Theoremsubumgr 26180 A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020.)
 |-  ( ( G  e. UMGraph  /\  S SubGraph  G )  ->  S  e. UMGraph  )
 
Theoremsubusgr 26181 A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 27-Nov-2020.)
 |-  ( ( G  e. USGraph  /\  S SubGraph  G )  ->  S  e. USGraph  )
 
Theoremuhgrspansubgrlem 26182 Lemma for uhgrspansubgr 26183: The edges of the graph  S obtained by removing some edges of a hypergraph  G are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 26183. (Contributed by AV, 18-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  (Vtx `  S )  =  V )   &    |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )   &    |-  ( ph  ->  G  e. UHGraph  )   =>    |-  ( ph  ->  (Edg `  S )  C_  ~P (Vtx `  S ) )
 
Theoremuhgrspansubgr 26183 A spanning subgraph  S of a hypergraph  G is actually a subgraph of  G. A subgraph  S of a graph  G which has the same vertices as  G and is obtained by removing some edges of  G is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  (Vtx `  S )  =  V )   &    |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )   &    |-  ( ph  ->  G  e. UHGraph  )   =>    |-  ( ph  ->  S SubGraph  G )
 
Theoremuhgrspan 26184 A spanning subgraph  S of a hypergraph  G is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  (Vtx `  S )  =  V )   &    |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )   &    |-  ( ph  ->  G  e. UHGraph  )   =>    |-  ( ph  ->  S  e. UHGraph  )
 
Theoremupgrspan 26185 A spanning subgraph  S of a pseudograph  G is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  (Vtx `  S )  =  V )   &    |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )   &    |-  ( ph  ->  G  e. UPGraph  )   =>    |-  ( ph  ->  S  e. UPGraph  )
 
Theoremumgrspan 26186 A spanning subgraph  S of a multigraph  G is a multigraph. (Contributed by AV, 27-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  (Vtx `  S )  =  V )   &    |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )   &    |-  ( ph  ->  G  e. UMGraph  )   =>    |-  ( ph  ->  S  e. UMGraph  )
 
Theoremusgrspan 26187 A spanning subgraph  S of a simple graph  G is a simple graph. (Contributed by AV, 15-Oct-2020.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  (Vtx `  S )  =  V )   &    |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )   &    |-  ( ph  ->  G  e. USGraph  )   =>    |-  ( ph  ->  S  e. USGraph  )
 
Theoremuhgrspanop 26188 A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UHGraph  ->  <. V ,  ( E  |`  A )
 >.  e. UHGraph  )
 
Theoremupgrspanop 26189 A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UPGraph  ->  <. V ,  ( E  |`  A )
 >.  e. UPGraph  )
 
Theoremumgrspanop 26190 A spanning subgraph of a multigraph represented by an ordered pair is a multigraph. (Contributed by AV, 27-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. UMGraph  ->  <. V ,  ( E  |`  A )
 >.  e. UMGraph  )
 
Theoremusgrspanop 26191 A spanning subgraph of a simple graph represented by an ordered pair is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   =>    |-  ( G  e. USGraph  ->  <. V ,  ( E  |`  A )
 >.  e. USGraph  )
 
Theoremuhgrspan1lem1 26192 Lemma 1 for uhgrspan1 26195. (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  I  |  N  e/  ( I `
  i ) }   =>    |-  (
 ( V  \  { N } )  e.  _V  /\  ( I  |`  F )  e.  _V )
 
Theoremuhgrspan1lem2 26193 Lemma 2 for uhgrspan1 26195. (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  I  |  N  e/  ( I `
  i ) }   &    |-  S  =  <. ( V  \  { N } ) ,  ( I  |`  F )
 >.   =>    |-  (Vtx `  S )  =  ( V  \  { N } )
 
Theoremuhgrspan1lem3 26194 Lemma 3 for uhgrspan1 26195. (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  I  |  N  e/  ( I `
  i ) }   &    |-  S  =  <. ( V  \  { N } ) ,  ( I  |`  F )
 >.   =>    |-  (iEdg `  S )  =  ( I  |`  F )
 
Theoremuhgrspan1 26195* The induced subgraph  S of a hypergraph  G obtained by removing one vertex is actually a subgraph of  G. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.)
 |-  V  =  (Vtx `  G )   &    |-  I  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  I  |  N  e/  ( I `
  i ) }   &    |-  S  =  <. ( V  \  { N } ) ,  ( I  |`  F )
 >.   =>    |-  ( ( G  e. UHGraph  /\  N  e.  V ) 
 ->  S SubGraph  G )
 
Theoremupgrreslem 26196* Lemma for upgrres 26198. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  E  |  N  e/  ( E `
  i ) }   =>    |-  (
 ( G  e. UPGraph  /\  N  e.  V )  ->  ran  ( E  |`  F )  C_  { p  e.  ( ~P ( V  \  { N } )  \  { (/)
 } )  |  ( # `  p )  <_ 
 2 } )
 
Theoremumgrreslem 26197* Lemma for umgrres 26199 and usgrres 26200. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  E  |  N  e/  ( E `
  i ) }   =>    |-  (
 ( G  e. UMGraph  /\  N  e.  V )  ->  ran  ( E  |`  F )  C_  { p  e.  ~P ( V  \  { N }
 )  |  ( # `  p )  =  2 } )
 
Theoremupgrres 26198* A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 26195) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  E  |  N  e/  ( E `
  i ) }   &    |-  S  =  <. ( V  \  { N } ) ,  ( E  |`  F )
 >.   =>    |-  ( ( G  e. UPGraph  /\  N  e.  V ) 
 ->  S  e. UPGraph  )
 
Theoremumgrres 26199* A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 26195) is a multigraph. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  E  |  N  e/  ( E `
  i ) }   &    |-  S  =  <. ( V  \  { N } ) ,  ( E  |`  F )
 >.   =>    |-  ( ( G  e. UMGraph  /\  N  e.  V ) 
 ->  S  e. UMGraph  )
 
Theoremusgrres 26200* A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 26195) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.)
 |-  V  =  (Vtx `  G )   &    |-  E  =  (iEdg `  G )   &    |-  F  =  {
 i  e.  dom  E  |  N  e/  ( E `
  i ) }   &    |-  S  =  <. ( V  \  { N } ) ,  ( E  |`  F )
 >.   =>    |-  ( ( G  e. USGraph  /\  N  e.  V ) 
 ->  S  e. USGraph  )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >