MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem1 Structured version   Visualization version   Unicode version

Theorem reusv2lem1 4868
Description: Lemma for reusv2 4874. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2lem1  |-  ( A  =/=  (/)  ->  ( E! x A. y  e.  A  x  =  B  <->  E. x A. y  e.  A  x  =  B )
)
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reusv2lem1
StepHypRef Expression
1 n0 3931 . . 3  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
2 nfra1 2941 . . . . 5  |-  F/ y A. y  e.  A  x  =  B
32nfmo 2487 . . . 4  |-  F/ y E* x A. y  e.  A  x  =  B
4 rsp 2929 . . . . . . 7  |-  ( A. y  e.  A  x  =  B  ->  ( y  e.  A  ->  x  =  B ) )
54com12 32 . . . . . 6  |-  ( y  e.  A  ->  ( A. y  e.  A  x  =  B  ->  x  =  B ) )
65alrimiv 1855 . . . . 5  |-  ( y  e.  A  ->  A. x
( A. y  e.  A  x  =  B  ->  x  =  B ) )
7 mo2icl 3385 . . . . 5  |-  ( A. x ( A. y  e.  A  x  =  B  ->  x  =  B )  ->  E* x A. y  e.  A  x  =  B )
86, 7syl 17 . . . 4  |-  ( y  e.  A  ->  E* x A. y  e.  A  x  =  B )
93, 8exlimi 2086 . . 3  |-  ( E. y  y  e.  A  ->  E* x A. y  e.  A  x  =  B )
101, 9sylbi 207 . 2  |-  ( A  =/=  (/)  ->  E* x A. y  e.  A  x  =  B )
11 eu5 2496 . . 3  |-  ( E! x A. y  e.  A  x  =  B  <-> 
( E. x A. y  e.  A  x  =  B  /\  E* x A. y  e.  A  x  =  B )
)
1211rbaib 947 . 2  |-  ( E* x A. y  e.  A  x  =  B  ->  ( E! x A. y  e.  A  x  =  B  <->  E. x A. y  e.  A  x  =  B )
)
1310, 12syl 17 1  |-  ( A  =/=  (/)  ->  ( E! x A. y  e.  A  x  =  B  <->  E. x A. y  e.  A  x  =  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471    =/= wne 2794   A.wral 2912   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator