MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2 Structured version   Visualization version   Unicode version

Theorem reusv2 4874
Description: Two ways to express single-valuedness of a class expression  C ( y ) that is constant for those  y  e.  B such that  ph. The first antecedent ensures that the constant value belongs to the existential uniqueness domain  A, and the second ensures that  C ( y ) is evaluated for at least one  y. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2  |-  ( ( A. y  e.  B  ( ph  ->  C  e.  A )  /\  E. y  e.  B  ph )  ->  ( E! x  e.  A  E. y  e.  B  ( ph  /\  x  =  C )  <->  E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Distinct variable groups:    x, y, A    x, B    x, C    ph, x
Allowed substitution hints:    ph( y)    B( y)    C( y)

Proof of Theorem reusv2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfrab1 3122 . . . 4  |-  F/_ y { y  e.  B  |  ph }
2 nfcv 2764 . . . 4  |-  F/_ z { y  e.  B  |  ph }
3 nfv 1843 . . . 4  |-  F/ z  C  e.  A
4 nfcsb1v 3549 . . . . 5  |-  F/_ y [_ z  /  y ]_ C
54nfel1 2779 . . . 4  |-  F/ y
[_ z  /  y ]_ C  e.  A
6 csbeq1a 3542 . . . . 5  |-  ( y  =  z  ->  C  =  [_ z  /  y ]_ C )
76eleq1d 2686 . . . 4  |-  ( y  =  z  ->  ( C  e.  A  <->  [_ z  / 
y ]_ C  e.  A
) )
81, 2, 3, 5, 7cbvralf 3165 . . 3  |-  ( A. y  e.  { y  e.  B  |  ph } C  e.  A  <->  A. z  e.  { y  e.  B  |  ph } [_ z  /  y ]_ C  e.  A )
9 rabid 3116 . . . . . 6  |-  ( y  e.  { y  e.  B  |  ph }  <->  ( y  e.  B  /\  ph ) )
109imbi1i 339 . . . . 5  |-  ( ( y  e.  { y  e.  B  |  ph }  ->  C  e.  A
)  <->  ( ( y  e.  B  /\  ph )  ->  C  e.  A
) )
11 impexp 462 . . . . 5  |-  ( ( ( y  e.  B  /\  ph )  ->  C  e.  A )  <->  ( y  e.  B  ->  ( ph  ->  C  e.  A ) ) )
1210, 11bitri 264 . . . 4  |-  ( ( y  e.  { y  e.  B  |  ph }  ->  C  e.  A
)  <->  ( y  e.  B  ->  ( ph  ->  C  e.  A ) ) )
1312ralbii2 2978 . . 3  |-  ( A. y  e.  { y  e.  B  |  ph } C  e.  A  <->  A. y  e.  B  ( ph  ->  C  e.  A ) )
148, 13bitr3i 266 . 2  |-  ( A. z  e.  { y  e.  B  |  ph } [_ z  /  y ]_ C  e.  A  <->  A. y  e.  B  (
ph  ->  C  e.  A
) )
15 rabn0 3958 . 2  |-  ( { y  e.  B  |  ph }  =/=  (/)  <->  E. y  e.  B  ph )
16 reusv2lem5 4873 . . 3  |-  ( ( A. z  e.  {
y  e.  B  |  ph } [_ z  / 
y ]_ C  e.  A  /\  { y  e.  B  |  ph }  =/=  (/) )  -> 
( E! x  e.  A  E. z  e. 
{ y  e.  B  |  ph } x  = 
[_ z  /  y ]_ C  <->  E! x  e.  A  A. z  e.  { y  e.  B  |  ph } x  =  [_ z  /  y ]_ C
) )
17 nfv 1843 . . . . . 6  |-  F/ z  x  =  C
184nfeq2 2780 . . . . . 6  |-  F/ y  x  =  [_ z  /  y ]_ C
196eqeq2d 2632 . . . . . 6  |-  ( y  =  z  ->  (
x  =  C  <->  x  =  [_ z  /  y ]_ C ) )
201, 2, 17, 18, 19cbvrexf 3166 . . . . 5  |-  ( E. y  e.  { y  e.  B  |  ph } x  =  C  <->  E. z  e.  { y  e.  B  |  ph } x  =  [_ z  /  y ]_ C
)
219anbi1i 731 . . . . . . 7  |-  ( ( y  e.  { y  e.  B  |  ph }  /\  x  =  C )  <->  ( ( y  e.  B  /\  ph )  /\  x  =  C ) )
22 anass 681 . . . . . . 7  |-  ( ( ( y  e.  B  /\  ph )  /\  x  =  C )  <->  ( y  e.  B  /\  ( ph  /\  x  =  C ) ) )
2321, 22bitri 264 . . . . . 6  |-  ( ( y  e.  { y  e.  B  |  ph }  /\  x  =  C )  <->  ( y  e.  B  /\  ( ph  /\  x  =  C ) ) )
2423rexbii2 3039 . . . . 5  |-  ( E. y  e.  { y  e.  B  |  ph } x  =  C  <->  E. y  e.  B  (
ph  /\  x  =  C ) )
2520, 24bitr3i 266 . . . 4  |-  ( E. z  e.  { y  e.  B  |  ph } x  =  [_ z  /  y ]_ C  <->  E. y  e.  B  (
ph  /\  x  =  C ) )
2625reubii 3128 . . 3  |-  ( E! x  e.  A  E. z  e.  { y  e.  B  |  ph }
x  =  [_ z  /  y ]_ C  <->  E! x  e.  A  E. y  e.  B  ( ph  /\  x  =  C ) )
271, 2, 17, 18, 19cbvralf 3165 . . . . 5  |-  ( A. y  e.  { y  e.  B  |  ph }
x  =  C  <->  A. z  e.  { y  e.  B  |  ph } x  = 
[_ z  /  y ]_ C )
289imbi1i 339 . . . . . . 7  |-  ( ( y  e.  { y  e.  B  |  ph }  ->  x  =  C )  <->  ( ( y  e.  B  /\  ph )  ->  x  =  C ) )
29 impexp 462 . . . . . . 7  |-  ( ( ( y  e.  B  /\  ph )  ->  x  =  C )  <->  ( y  e.  B  ->  ( ph  ->  x  =  C ) ) )
3028, 29bitri 264 . . . . . 6  |-  ( ( y  e.  { y  e.  B  |  ph }  ->  x  =  C )  <->  ( y  e.  B  ->  ( ph  ->  x  =  C ) ) )
3130ralbii2 2978 . . . . 5  |-  ( A. y  e.  { y  e.  B  |  ph }
x  =  C  <->  A. y  e.  B  ( ph  ->  x  =  C ) )
3227, 31bitr3i 266 . . . 4  |-  ( A. z  e.  { y  e.  B  |  ph }
x  =  [_ z  /  y ]_ C  <->  A. y  e.  B  (
ph  ->  x  =  C ) )
3332reubii 3128 . . 3  |-  ( E! x  e.  A  A. z  e.  { y  e.  B  |  ph }
x  =  [_ z  /  y ]_ C  <->  E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) )
3416, 26, 333bitr3g 302 . 2  |-  ( ( A. z  e.  {
y  e.  B  |  ph } [_ z  / 
y ]_ C  e.  A  /\  { y  e.  B  |  ph }  =/=  (/) )  -> 
( E! x  e.  A  E. y  e.  B  ( ph  /\  x  =  C )  <->  E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
3514, 15, 34syl2anbr 497 1  |-  ( ( A. y  e.  B  ( ph  ->  C  e.  A )  /\  E. y  e.  B  ph )  ->  ( E! x  e.  A  E. y  e.  B  ( ph  /\  x  =  C )  <->  E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   [_csb 3533   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by:  cdleme25dN  35644
  Copyright terms: Public domain W3C validator