| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusv2 | Structured version Visualization version Unicode version | ||
| Description: Two ways to express
single-valuedness of a class expression |
| Ref | Expression |
|---|---|
| reusv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrab1 3122 |
. . . 4
| |
| 2 | nfcv 2764 |
. . . 4
| |
| 3 | nfv 1843 |
. . . 4
| |
| 4 | nfcsb1v 3549 |
. . . . 5
| |
| 5 | 4 | nfel1 2779 |
. . . 4
|
| 6 | csbeq1a 3542 |
. . . . 5
| |
| 7 | 6 | eleq1d 2686 |
. . . 4
|
| 8 | 1, 2, 3, 5, 7 | cbvralf 3165 |
. . 3
|
| 9 | rabid 3116 |
. . . . . 6
| |
| 10 | 9 | imbi1i 339 |
. . . . 5
|
| 11 | impexp 462 |
. . . . 5
| |
| 12 | 10, 11 | bitri 264 |
. . . 4
|
| 13 | 12 | ralbii2 2978 |
. . 3
|
| 14 | 8, 13 | bitr3i 266 |
. 2
|
| 15 | rabn0 3958 |
. 2
| |
| 16 | reusv2lem5 4873 |
. . 3
| |
| 17 | nfv 1843 |
. . . . . 6
| |
| 18 | 4 | nfeq2 2780 |
. . . . . 6
|
| 19 | 6 | eqeq2d 2632 |
. . . . . 6
|
| 20 | 1, 2, 17, 18, 19 | cbvrexf 3166 |
. . . . 5
|
| 21 | 9 | anbi1i 731 |
. . . . . . 7
|
| 22 | anass 681 |
. . . . . . 7
| |
| 23 | 21, 22 | bitri 264 |
. . . . . 6
|
| 24 | 23 | rexbii2 3039 |
. . . . 5
|
| 25 | 20, 24 | bitr3i 266 |
. . . 4
|
| 26 | 25 | reubii 3128 |
. . 3
|
| 27 | 1, 2, 17, 18, 19 | cbvralf 3165 |
. . . . 5
|
| 28 | 9 | imbi1i 339 |
. . . . . . 7
|
| 29 | impexp 462 |
. . . . . . 7
| |
| 30 | 28, 29 | bitri 264 |
. . . . . 6
|
| 31 | 30 | ralbii2 2978 |
. . . . 5
|
| 32 | 27, 31 | bitr3i 266 |
. . . 4
|
| 33 | 32 | reubii 3128 |
. . 3
|
| 34 | 16, 26, 33 | 3bitr3g 302 |
. 2
|
| 35 | 14, 15, 34 | syl2anbr 497 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: cdleme25dN 35644 |
| Copyright terms: Public domain | W3C validator |